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Formal Methods  
Enhance Deep Learning 
for Smart Cities:
Challenges and future directions 
Rigorous approaches based on formal methods have the potential to 
fundamentally improve many aspects of deep learning. This article 
discusses the challenges and future directions of formal methods 
enhanced deep learning for smart cities. 
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compromised pedestrian safety. The 
question of how we might build reli-
able integrated smart cities—despite 
facing significant new challenges due 
to the increased integration, complexi-
ty, and environmental uncertainties—
becomes a central problem.

Moreover, many services are sup-
ported by deep learning models. How-
ever current deep learning techniques 
are not mature enough to deal with 
the challenges—safety-critical, large-
scale services that operate in highly 
uncertain settings, with humans in 
the loop. One of the key reasons is 
that, as data-driven approaches, they 

As artificial intelligence (AI) technologies advance, deep learning has been broadly 
applied to cyber-physical systems (CPS) and the internet of things (IoT), which 
form the basis of emerging and future services in smart cities. Furthermore, the 
development of faster and more reliable networks, especially with the extensive 

deployment of 5G, is accelerating the integration of smart city services.
But while significant research efforts have been made toward building smarter services, 

sensors, and infrastructures in cities, the research challenge of ensuring that real-time 
operations satisfy safety and performance requirements has received only scant attention.

First, most services are developed 
independently by different stakehold-
ers within their own contexts. Inte-
grating multiple CPS into the same 
environment could cause problems 
like conflicts among their actions that 
are not foreseen during the design 
process. For instance, a congestion 
control service may change a traffic 
light system to improve traffic due to 
a football game, whereas an environ-
mental control service may change the 
same traffic light system due to noise 
and pollution emissions. As a result, 
there might arise: 1) a direct conflict 
between these two services or with 

a third service, for example, an am-
bulance is delayed due to conflicting 
traffic light schedules; or 2) an environ-
mental conflict with another service, 
for example, a power plants’ emis-
sions control service is not aware of in-
creased pollutant emissions due to an 
unexpected increase in traffic and thus 
does not update their emission setting, 
which ultimately leads to the com-
bined emissions violating emission 
standards. Such conflicts could lead 
to serious consequences and adversely 
impact millions of lives every day, for 
example, in the form of delayed travel 
time, hazardous air pollution levels, or 
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Dynamism. While some services op-
erate with a static schedule (for exam-
ple, sending out school buses to pick 
up students each morning), a major 
portion of services function dynami-
cally. For example, a public transport 
service schedules bus routes and fre-
quency based on demand—planning 
for more buses when there are large 
events like festivals. Such dynamic op-
erations can introduce complexity if 
the service shares resources (sensors/
actuators/data) with other services. 
Moreover, city data can barely capture 
such complex dynamism. How can we 
inject extra city knowledge on the dy-
namism into learning models?

Real time. In a smart city, decision-
makers and services frequently rely 
on real-time information for opera-
tional decision-making. For example, 
emergency response services send fire 
trucks and ambulances when an ac-
cident is detected or reported. Timing 
is critical in such scenarios. Moreover, 
suppose a service can predict the like-
lihood of an incident and reallocate 
the resources accordingly. In that case, 
it will save a large amount of response 
time or even prevent the incident from 
happening. Therefore, there is a high 
demand for efficient predictive moni-
toring in real time.

Efficiency. Efficiency can be mea-
sured as a function of resources, cost, 
and time. Maximizing efficiency for 
one service can often lead to resource 
constraints for another service if the 
two services share any resources. 
Thus, it poses an optimization prob-
lem with constraints on resources 
and operational costs. On the other 
hand, it also indicates a high demand 
for efficiency on the services’ models. 
However, formal verification for large-
scale problems tends to be very costly. 
Developing an effective and efficient 
verified learning algorithm is an open 
research question.

Ownership. Services are developed 
by different stakeholders. A service 
can be private, public, or commercial 
in terms of ownership. The degree of 
interaction and information flow be-
tween services with different owner-
ships can vary according to service 
design and city policies. Meanwhile, 
building safe and secure interactions 
between services and city operating 

often do not consider system proper-
ties, environmental requirements, or 
the complex interactions with other 
services or humans in the same en-
vironment. Their reliability when de-
ployed in real-world environments 
then becomes questionable.

Toward building robust and re-
liable AI for smart cities, research-
ers have proposed that rigorous ap-
proaches based on formal methods 
have the potential to fundamentally 
improve many aspects of deep learn-
ing, including transparency, robust-
ness, algorithmic equity, and fairness, 
among others [1]. As mathematically 
rigorous techniques, formal methods 
have been widely applied to verifying 
and evaluating critical systems such as 
autonomous aircraft technology. This 
motivates a novel research direction of 
verifying machine learning using for-
mal methods in recent years, mainly 
targeting applications with well-speci-
fied safety requirements such as auton-
omous driving and robotics. However, 
verification is only meaningful when 
paired with high-quality formal speci-
fications. The problem with current 
approaches is that such specification 
does not exist or is highly under-ex-
plored in smart cities. This poses great 
challenges to applying formal meth-
ods to machine learning in a smart city 
context.

We, therefore, present a novel re-
search direction—developing rigor-
ous and robust AI for smart cities by 
integrating formal methods and deep 
learning. We first discuss the charac-
teristics of smart city services. Next, we 
present the research challenges and 
future directions in developing formal 
methods enhanced deep learning for 
smart cities. Specifically, as shown in 
Figure 1, we focus on addressing six 
research questions. How can we guar-

antee that deep learning results will 
satisfy system properties? How can 
city requirements and properties be 
identified from large-scale city data? 
How do we specify and verify city re-
quirements? How should uncertainty 
be dealt with in smart cities? How can 
we develop explainable and verifiable 
AI methods for smart cities? How do 
we enhance socially aware equity and 
fairness in smart cities?

CHARACTERISTICS  
OF SMART CITY SERVICES
The characteristics of a smart city ser-
vice describe how it interacts with the 
city’s resources and other services, 
and how it affects the environment 
and the humans living in it. Some 
fundamental characteristics of smart 
city services and their interactions 
with one another have been intro-
duced in our previous work [2]. Here 
we restate them in the context of ap-
plying formal methods enhanced 
deep learning techniques.

Uncertainty. There are usually three 
types of uncertainty in the city applica-
tions: data, model, and event/behavior 
uncertainty. The first two types also 
broadly exist in many other applica-
tions and have been extensively studied 
in deep learning. The third one refers 
to unforeseen events or processes that 
cannot be accounted for by the servic-
es ahead of time or are unknown to the 
service, but affect its performance. Un-
certainty can occur in the different lay-
ers of a service: sensing layer (a vehicle-
attached pollution sensor moved from 
its expected location), communication 
layer (network failure), or actuation lay-
er (control valve only opens partially). 
The uncertainty poses considerable 
challenges for building accurate deep 
learning models and raises demands 
for guarantees from these models.

Figure 1. Formal methods enhanced deep learning for smart cities.
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in a smart city). Safety requirements 
in smart cities are specified in natural 
language, which is often inaccurate 
and ambiguous. Therefore, it is diffi-
cult for machines to understand and 
verify the requirements. In addition, 
the city-states (data) are large-scale 
and heterogeneous across spatial and 
temporal domains, which raises great 
challenges for real-time monitoring. 
Existing formal languages (for ex-
ample, STL and its extensions [7]) are 
insufficient for specifying the complex 
spatial-temporal requirements and 
inefficient for monitoring large-scale 
signals in real time. To bring formal 
logic to solve real-world problems, re-
searchers have developed novel formal 
specification languages (for example, 
SaSTL [4] and STL-U [6]) and new ef-
ficient monitoring algorithms. This 
logic is powerful and can verify realis-
tic requirements based on time, space, 
aggregation, and uncertainty. From 
formalizing 1,000 real city require-
ments the results show SaSTL-U has a 
much higher coverage expressiveness 
(95%) than the state of the art. In fu-
ture work, with the increasing number 
of smart services in cities, developing 
scalable methods for checking the cor-
rectness and security of city operation 
with runtime assurance focusing on 
quantitative properties (for example, 
uncertainty quantification, and prob-
abilities) is of great importance.

DEALING WITH UNCERTAINTY
As one of the key characteristics of 
smart services in cities, uncertainty 
significantly affects the performance 
of deep learning models. How can we 
predict a system’s future states and 
check if the prediction satisfies sys-
tem requirements? With such capabil-
ity, the system operator may take ac-
tions in advance to prevent predicted 
future requirement violations. A key 
challenge of predictive monitoring 
is accounting for the inherent uncer-
tainty (for example, due to sensor and 
environmental noise, unexpected 
events, accidents, or human behav-
iors) in the city. We developed a novel 
approach for monitoring sequential 
predictions generated from Bayesian 
recurrent neural networks that can 
capture the inherent uncertainty in 
CPS, drawing on insights from our 

centers become a critical step toward 
an integrated smart city system.

Although not completely, these 
characteristics outline the potential 
complexity of smart city services. 
Targeting the demands raised by city 
characteristics, we will now discuss 
the challenges and future directions of 
developing formal methods enhanced 
deep learning for smart cities.

PROVIDING GUARANTEES  
TO DEEP LEARNING RESULTS
Deep learning models have outstand-
ing capabilities for prediction and 
decision-making support for smart 
services in smart cities. However, in 
large-scale and complex integrated 
systems like smart cities, deep learn-
ing models are not always robust, and 
are often subject to anomalies and 
uncertainty. Systems in cities often fol-
low certain model properties, however, 
they cannot be guaranteed by existing 
prediction models. Therefore, guaran-
teeing that deep learning results will 
satisfy system properties becomes an 
important research question. In previ-
ous work, we developed a formal logic 
enhanced learning framework that 
implements logic-based criteria to en-
hance recurrent neural network (RNN) 
models to follow system critical prop-
erties [3]. The framework incorporates 
critical properties into the learning 
process in an end-to-end manner with 
backpropagation. It is general and can 
be applied to various RNN models. 
It was evaluated on large-scale real-
world city datasets, which showed the 
new framework not only improves the 
accuracy of predictions in various RNN 
models, but also guarantees the sat-
isfaction of model properties and in-
creases the robustness of RNNs.

IDENTIFYING CITY  
REQUIREMENTS AND PROPERTIES
An important step in bringing inte-
grated formal methods and machine 
learning techniques to real-world ap-
plications is systematically learning 
from large-scale real-world data and 
applications. However, unlike areas 
of robotics and autonomous driving 
where specifications have been exten-
sively studied, requirements and prop-
erties are extremely underexploited 
in smart cities. This poses significant 

challenges to incorporating formal 
methods into smart city models. In 
the current state-of-the-art approach, 
researchers conducted a series of da-
ta-driven analytics. To identify desir-
able features to have in a specification 
language for cities, we systematically 
studied and annotated more than a 
thousand city requirements (for exam-
ple, standards and regulations) across 
different domains—including energy, 
environment, transportation and pub-
lic safety—from more than 80 cities 
around the world [4]. We also identified 
types of service conflicts, model prop-
erties, and uncertainty by analyzing 
cross-domain city data [5, 6]. However, 
the scalability and generalizability 
of these studies are still insufficient. 
Furthermore, systematically identify-
ing and mining real-world city speci-
fications from a noisy and complex 
city environment with support from 
city experts and citizens in the loop is 
a promising yet challenging research 
question.

SPECIFYING AND VERIFYING  
CITY REQUIREMENTS
To introduce city requirements into 
deep learning models, a key question 
is whether large-scale city-states sat-
isfy a wide range of system require-
ments at runtime. The challenges here 
include how an expressive formal lan-
guage can be used to specify system 
requirements, so that they can be un-
derstood by machines, and how to effi-
ciently monitor requirements that may 
involve multiple sensor data streams 
(for example, some requirements are 
concerned with thousands of sensors 

The research 
challenge of 
ensuring that real-
time operations 
satisfy safety and 
performance 
requirements has 
received only scant 
attention.
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example, increasing and decreasing 
glucose levels by two healthcare ser-
vices at the same time) and conflicts 
between human decisions or policies. 
For different application domains, the 
definition and measurement of fair-
ness are very different. This motivates 
the development of customizable and 
more sophisticated measurements 
and criteria to train the algorithms. 
Formal specification and verification 
techniques are effective ways to fulfill 
this gap. For example, applying for-
mal methods to measure and validate 
specifications regarding socially aware 
fairness, accountability, transparency, 
and trade-offs in smart services is still 
an under-exploited direction.
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study of real-world city datasets [6]. 
We also developed novel criteria that 
leverage STL-U monitoring results 
to calibrate the uncertainty estima-
tion in Bayesian RNNs. Evaluation 
results on large-scale real-world city 
data show these approaches improve 
the accuracy and robustness of deep 
learning models and achieve well-
calibrated uncertainty. Moreover, 
the system also effectively improves 
smart cities’ safety and performance 
in smart city simulations.

DEVELOPING EXPLAINABLE  
AND VERIFIABLE AI METHODS  
FOR SMART CITIES
Despite the impressive achievements 
of machine learning in real-world ap-
plications, explainability is still one 
of the biggest concerns of applying AI 
models to safety-critical CPS/IoT. Rig-
orous approaches based on formal 
methods have the potential to funda-
mentally conquer this limitation by 
verifying and guiding deep learning 
models. Researchers have developed 
learning frameworks by incorporat-
ing formal verification and synthesis 
techniques. Potential future direc-
tions include formally verifying the 
results to detect adversarial and out-
of-distribution inputs, verifying the 
intermediate learning process with 
hyper-properties, formal knowledge 
distillation, uncertainty quantifica-
tion, logic-based learning criteria, 
among others.

ENHANCING SOCIALLY AWARE  
EQUITY AND FAIRNESS
Human beings (as citizens and city 
decision-makers) play essential roles 
in smart cities. Socially aware equity 
and fairness in smart city systems is 
another key direction that researchers 
have been exploring in recent years. 
Increasing integration of smart cities 
(for example, city services and their 
stakeholders, as well as decision-mak-
ers from different departments and 
agencies) unavoidably adds more chal-
lenges in maintaining socially aware 
equity and fairness in smart cities. Fol-
lowing previous work on conflict detec-
tion and resolution among city services 
[8, 9], one direction could be address-
ing human-in-the-loop conflicts such 
as conflicting human physiology (for 

Learn more:

https://src.acm.org

• Awards: cash prizes, medals, and  
ACM student memberships

• Prestige: Grand Finalists receive 
a monetary award and a Grand 
Finalist certi� cate that can be 
framed and displayed

• Visibility: meet with researchers 
in their � eld of interest and make  
important connections

• Experience: sharpen communi-
cation, visual, organizational, and  
presentation skills

ACM Student 
Research 

Competition

The ACM Student Research 
Competition (SRC) o� ers a unique 
forum for undergraduate and 
graduate students to present their 
original research before a panel 
of judges and attendees at well-
known ACM-sponsored and co-
sponsored conferences. The SRC 
is an internationally recognized 
venue enabling students to earn 
many tangible and intangible 
rewards from participating:

Attention: 
Undergraduate and Graduate

Computing Students




