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ABSTRACT
In order to prevent safety violations, predictive monitoring with
uncertainty is crucial for deep learning-enabled services in smart
cities. We develop a novel predictive monitoring system for smart
city applications, which consists of an RNN-based predictor with
uncertainty estimation and a new specification language, named
Signal Temporal Logic with Uncertainty. The solution first predicts
a sequence of distributions representing city’s future states with
uncertainty estimation and then checks the predicted results against
STL-U specified safety and performance requirements. The system
supports decision making by providing a quantitative satisfaction
degree with confidence guarantees. We receive promising results
from evaluations on two large-scale city datasets, and on a case
study on real-time predictive monitoring in a simulated smart city.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies → Bayesian
network models.
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1 INTRODUCTION
Smart services are increasingly embedded in modern cities aiming
to enhance various aspects of citizens’ lives, including safety, well-
ness, and quality of life [2]. Smart services infer city states from
various sensors deployed in the city, and take actions on actuators.
Meanwhile, City Operations Centers (e.g., IBMs Intelligent Opera-
tions Center and Microsoft CityNext) deploy control platforms to
monitor city states and services against city safety and performance
requirements to make decisions. If a requirement violation is de-
tected by the monitor, the city operators can take actions to change
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Figure 1: System Overview

the states, such as controlling traffic signals, rejecting unsafe ac-
tions, sending alarms to police, etc. To prevent unsafe situations
ahead of time, more and more services and control centers predict
city’s future states with deep learning prediction models, e.g., fire
risk prediction, conflict detection and resolution [3], etc.

However, for deep prediction models, with the same set of inputs,
the output will always be the same. It is difficult to assess if a model
is making sensible predictions just with a single value and making
a decision on that single value can be unreliable. In reality, data and
models are not perfect and contain uncertainties (e.g., sensing and
environment noise, unexpected events, accidents) that are not re-
flected by the deterministic deep neural networks. Uncertainty will
affect the prediction and monitoring results, and therefore influence
the safety and decision making in the cities. Meanwhile, while there
has been a great effort in developing monitoring techniques for
smart cities such as using Signal Temporal Logic and its extensions,
existing works mostly focus on monitoring a single multi-variable
signal, and cannot be directly used to monitor the signals output
from deep learning with uncertainty.

In this abstract, we briefly describe a novel predictive monitoring
system considering uncertainties for deep learning enabled smart
cities in order to assure services’ safety and reliability. The system
includes twomajor technical components (as shown in Figure 1), i.e.,
deep learning prediction with uncertainty, and STL-U monitoring
with uncertainty. First, we cast cast deep learning as Bayesian
models, which return a predicted sequence of city future states
with uncertainty estimation (defined as flowpipes). Second, we
develop a new specification language Signal Temporal Logic with
Uncertainty (STL-U) for the monitoring of flowpipes output by
predictive Bayesian deep learning models. We evaluate the system
on large-scale real city datasets and perform a case study on real-
time predictive monitoring for simulated New York City.

2 SYSTEM DESIGN
Our system is envisioned to be deployed in the control center of
a smart city to predict the city’s future states with uncertainty
estimation, and then verify if the predicted results satisfy city safety
and performance requirements. The monitoring results can support
city decision making.
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Figure 2: AQI prediction with Bayesian LSTM )
2.1 Deep Learning Prediction with Uncertainty
At runtime, the system first takes city’s current states as input,
and predicts city’s future states using Bayesian RNN models [1],
which considers data and model uncertainty. The predicted results
are presented as a time-series flowpipe containing the city’s future
N-hour states. At each time point, instead of a single value, it shows
a range of the potential values under a given confidence level. To be
more specific, we cast the LSTM predictor as a probabilistic model
with 𝑤 = 𝑊,𝑤 ∼ 𝑝 (𝑤) as a random variable. Bayesian LSTM
predictor 𝑓 ∗ is shown in Figure 2(b). The Bayesian LSTM formula
is updated as, 𝑥∗

𝑡+1 = 𝑔(ℎ∗𝑡 ), and ℎ∗𝑡 , 𝑐
∗
𝑡 = 𝑓 ∗ (𝑥𝑡 , ℎ∗𝑡−1, 𝑐

∗
𝑡−1;𝑤). To

estimate the posterior probability distribution, we apply Monte
Carlo (MC) estimate by repeating the prediction for 𝑁 times. At
each iteration, with the exact same input, we obtain a different
set of outputs (i.e., a time series trace) {𝑥 ( 𝑗)1 , 𝑥

( 𝑗)
2 , 𝑥

( 𝑗)
3 , 𝑥

( 𝑗)
4 }. In

total, we have a set of traces 𝜔 containing 𝑁 different traces. At a
single time unit 𝑡 (𝑡 > 0), we obtain 𝑁 observations of 𝑥 ( 𝑗)𝑡 with
𝑖 = {1, ..., 𝑁 }. We estimate the expectation \𝑡 and variance 𝜎𝑡 from
the samples. Therefore, at time 𝑡 , we obtain the estimated results
from the Bayesian LSTM as a distribution, i.e. Φ𝑡 ∼ N(\𝑡 , 𝜎2𝑡 ).

2.2 STL-U Monitoring with Uncertainty
We develop a new specification language Signal Temporal Logic with
Uncertainty (STL-U) for monitoring the prediction results (such as
Figure 2(a)) from deep learning models such as Bayesian LSTMs
against the system requirements. We first formally define new
types of signals called flowpipes that characterize the prediction
results of deep learning with uncertainty. A flowpipe signal Ω is
defined over a finite discrete time domain T such that Ω[𝑡] = Φ𝑡
at any time 𝑡 ∈ T, where Φ𝑡 is a Gaussian distribution N(\𝑡 , 𝜎2𝑡 ).
Given a confidence level Y ∈ [0, 1] ⊆ R, the flowpipe at time 𝑡 is
bounded by a confidence interval [Φ−

𝑡 (Y),Φ+
𝑡 (Y)]. Then, we define

the syntax and semantics of STL-U based on flowpipe signals. We
denote by 𝜔 : T → {Ω}𝑛 a multi-dimensional flowpipe signal,
where T = [0, 𝑑) ⊆ R represents for a finite discrete time domain
and 𝑛 = |𝑋 | for a finite set of (independent) real variables 𝑋 . Each
real variable 𝑥 ∈ 𝑋 has a corresponding flowpipe Ω𝑥 , whose value
follows a Gaussian distributionΩ𝑥 [𝑡] at time 𝑡 . The syntax of STL-U
is defined by the grammar,

𝜑 := `𝑥 (Y) | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜑1U𝐼𝜑2,
STL-U can be used to specify system critical requirements with

satisfaction confidence levels, for example, “with 90% confidence

Figure 3: Uncertainty in AQI data (the dark blue shadow cov-
ers the range of 95% percentile.)
level, the predicated AQI in the next 10 hours should always be
below 100”. We will define strong and weak satisfaction relations
for the Boolean semantics of STL-U to indicate whether all or
partial values within a flowpipe confidence interval range satisfies
a requirement, respectively. In addition, we will also develop new
methods for calculating the confidence level that guarantees a city
requirement is satisfied by the given prediction sequence.

3 EVALUATION
We evaluate the system on large-scale real city datasets (traffic
volume in NYC and AQI in Beijing) and perform case studies on
real-time predictive monitoring for simulated New York City. From
the preliminary results, we observe that,

(1) By analyzing the datasets (as shown in Figure 3), we found
that significant uncertainty exists in the city data; the levels of
uncertainty vary by datasets and locations; and pre-knowledge
could also lead to different levels of uncertainty.

(2) On the evaluation of real city data, our system is effective
in monitoring the flowpipes resulting from deep learning models
with uncertainty. It is efficient to monitor a large scale of flowpipes
resulting from deep learning models with uncertainty, e.g., on aver-
age, it only takes 417 seconds to monitor 130,000 flowpipes with an
8-time unites prediction against 390 requirements, which cannot
be monitored by STL or its variants.

(3) On the real-time simulation, STL-U predictive monitor re-
duces the number of false violation detection, and improves the
safety and performance of a smart city comparing to the monitor
without considering uncertainty. For example, the air quality index
is reduced by 23.7%, and emergency waiting time is reduced by
28.3% comparing to the monitor without considering uncertainty.
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