
Runtime Monitoring of Safety and Performance
Requirements in Smart Cities

Meiyi Ma
Department of Computer

Science
University of Virginia

Charlottesville, Virginia, 22903
meiyi@virginia.edu

John A. Stankovic
Department of Computer

Science
University of Virginia

Charlottesville, Virginia, 22903
stankovic@virginia.edu

Lu Feng
Department of Computer

Science
University of Virginia

Charlottesville, Virginia, 22903
lu.feng@virginia.edu

ABSTRACT
With the increasing number of smart services implemented
in smart cities, it is important yet challenging to dynami-
cally detect service conflicts with respect to safety and per-
formance requirements. In this paper, we propose a frame-
work for monitoring the operation of smart cities and ser-
vices at runtime. We formalize a set of typical safety and
performance requirements from different domains in smart
cities (e.g., transportation, emergency, and environment) us-
ing Signal Temporal Logic. We present a case study based
on a smart city simulator, in which actions of smart services
and their predicted effects on city states are converted into
signal traces over time and monitored continuously using
formal specifications. The experimental results demonstrate
the feasibility of using runtime monitoring to detect various
conflicts of smart services.

CCS Concepts
•Security and privacy→ Logic and verification; •Applied
computing → Service-oriented architectures; •Computer
systems organization → Sensors and actuators;

Keywords
Smart City, Safety and Performance Requirements, Signal
Temporal Logic, Runtime Monitoring

1. INTRODUCTION
Cities around the globe are becoming smarter, thanks

to the prevalence of the Internet of Things (IoT) technol-
ogy. Many city governments (e.g., Amsterdam, Barcelona,
Chicago, and Stockholm) have devoted significant effort in
implementing infrastructure for sensing and actuation, with
the purpose of improving public services and quality of life.
Meanwhile, companies (e.g., IBM, Oracle) have invested
heavily to develop smart city IoT platforms and services.
It is estimated that the global market for smart city services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SafeThings’17, November 5, 2017, Delft, Netherlands
c© 2017 ACM. ISBN 978-1-4503-5545-2/17/11. . . $15.00

DOI: https://doi.org/10.1145/3137003.3137005

across domains of transportation, energy, healthcare, water,
food and waste will amount to about $400 billion per year
by 2020 [13]. Nevertheless, as an increasing number of smart
services, developed independently by different stakeholders
and operated in smart cities simultaneously, an open prob-
lem is how to detect and resolve conflicts among the smart
services. Often smart cities build control centers that pro-
vide control of services and dashboard of city states, such as
Rio de Janeiro’s Operations Center and Smart+Connected
Operations Center. They are aware of real-time city states
collected from sensors, such as the air quality, traffic con-
dition, pedestrian number, etc. Many public smart services
send requests to centers before taking actions. Our solution
would execute in these control centers.

There are several other approaches for conflict detection
in domains other than smart cities. DepSys [11] and SIFT
[7] provide comprehensive strategies to specify, detect, and
resolve conflicts in a smart home setting. Preclude [12] is
a semantic rule-based solution to detect conflicting health
advice derived from heterogeneous sources utilizing linguis-
tic rules and external knowledge bases. Eyephy [10] detects
dependencies across healthcare interventions by simulating
the effect of interventions on over 7000 physiological param-
eters. However, none of the existing work on conflict de-
tection across applications formulates the conflict detection
in a smart city domain or as a runtime monitoring problem
using formal methods.

In our previous work, we proposed CityGuard, a safety-
aware watchdog architecture, for the detection and resolu-
tion of service conflicts in smart cities [8]. CityGuard is
designed to be a middle layer embedded between the infras-
tructure layer (sensors and actuators) and the software layer
(IoT platforms and smart services) installed in the smart
city control center. The vision of CityGuard is to intercept
the actions from smart services, detect if potential conflicts
exist ahead of time, and provide conflict resolution when
necessary. However, CityGuard detects service conflicts by
running simulations and using hard-encoded rules. There is
no formal logic used in the analysis.

In this paper, we address this limitation by proposing
a temporal logic based runtime monitoring framework for
safety and performance requirements in smart cities. Run-
time monitoring is an approach that monitors and analyzes
the runtime behavior of systems to detect if system predicted
execution traces satisfy or violate certain properties. Such
properties are often captured as formal specifications, allow-
ing for a less adhoc analysis approach than system testing or

Runtime	
Monitoring

Smart	Cities

Safety	&	Performance	
Requirements

Execution	Traces	

“green” U≤t “red”

Temporal	Logic	
Specifications

Result

(1)

(2)

(3)

Figure 1: Overview of runtime monitoring frame-
work for smart cities

simulation. Although runtime monitoring has been widely
applied to various computer software and hardware systems,
to the best of our knowledge, this is the first work to pro-
pose a temporal logic based runtime monitoring framework
for smart cities.

The major contributions of this paper are:
A framework for runtime monitoring of smart cities: We

describe how to create predicted traces of the operation of
smart cities using an simulator, what traces and specifica-
tions to monitor, and how to use runtime monitoring for the
conflict detection of smart services.

Formal specification patterns of safety and performance
requirements: We present a set of specification patterns writ-
ten in Signal Temporal Logic, which cover typical safety
and performance requirements across the domains of trans-
portation, emergency and environment in smart cities. We
also provide specification patterns for describing conflicts in
smart cities.

A case study of conflict detection in smart cities via run-
time monitoring: We demonstrate the applicability of our
proposed runtime monitoring framework and specification
patterns via a case study based on a smart city simulator
SUMO [4] and the Breach monitoring toolbox [5].

2. RUNTIME MONITORING FRAMEWORK
FOR SMART CITIES

In this section, we propose a framework for runtime mon-
itoring of smart cities. Figure 1 shows an overview of the
proposed framework. First, when receiving action requests
from smart services, we predict their effects on the smart
city over a future time period through simulation. Second,
we convert safety and performance requirements of smart
cities written in English to formal specifications expressed
in signal temporal logic. Then, we apply algorithmic run-
time monitoring techniques to check if the execution traces
satisfy or violate the specifications. We describe each of
these steps in detail as follows.

Step 1: Simulating and extracting execution traces.
To reduce the complexity of runtime monitoring, we simu-
late requested actions and extract traces from the projected
operation of smart cities. When receiving action requests
from smart services, we execute actions for a time period
into the future on the simulated city, where the simulator is
initialized to have the same states as the real city (i.e., city

states of the moment when actions are requested). Then we
extract the predicted execution traces from the simulation.

There are two types of predicted traces: (1) predicted
actions issued by smart services and (2) predicted states of
smart cities. Smart services request actions on the actuators
in smart cities. For example, smart traffic services can order
the traffic lights at certain street intersection to change the
value of the signals at a given time or smart event services
can request blocking certain streets. Such actions can take
binary or numeric values (e.g., green or red for traffic sig-
nals, four illumination levels for street lights). The actions
are often issued with time intervals (e.g., keep the traffic
light green for 3 minutes). The predicted states of smart
cities include the level of air quality, noise, waiting time
of pedestrians at intersections, average speed of traffic, etc.
Actions from smart services have effects on the city states.
For example, the level of air quality decreases if a new chem-
ical factory opens; the average speed of traffic on highway
decreases if there is an accident and a lane is blocked. We
represent traces of service actions and city states as real-
time discrete or continuous signals (e.g., traffic light signals
are discrete, while noise levels are continuous).

Step 2: Specifying safety and performance re-
quirements.
Governments and companies have been publishing various
rules, policies and laws regarding the safety and performance
of smart cities. These requirements are often written in En-
glish (or other languages), which cannot be directly used as
formal specifications for runtime monitoring. Mining formal
specifications from natural language requirements is known
as a difficult problem [6]. There are several additional chal-
lenges when considering requirements of smart cities. First,
some requirements are vague or incomplete, without spe-
cific information about the location, time and conditions.
Second, smart cities are open systems with significant un-
certainty, thus the requirements should also allow certain
degree of uncertainty. To this end, we distinguish hard con-
straints that must be satisfied (e.g., actions of smart services
should not cause collisions of vehicles) and soft constraints
that allow uncertainty (e.g., actions of smart services should
not increase traffic congestion by more than 10%). To help
people write formal specifications for smart city applications
more easily, we present a set of specification patterns as
templates in Section 3. Among the various choices of tem-
poral logic for runtime monitoring, we use Signal Temporal
Logic (STL) [5], a formalism for specifying requirements of
dense-time real-valued signals. This is because the execu-
tion traces of smart cities include discrete, continuous and
timed behaviors.

Step 3: Runtime monitoring for smart service
conflict detection.
We can check if predicted execution traces of smart cities
violate safety and performance specifications using runtime
monitoring. Such violations are often caused by conflicts
among smart services. To detect service conflicts, we in-
stantiate specification patterns presented in Section 3 and
monitor relevant traces of service actions and city states.
We demonstrate the feasibility of detecting smart service
conflicts using runtime monitoring via case studies in Sec-
tion 4. As a result, we detect the potential conflicts and
safety violation among actions of smart services in advance.

3. SIGNAL TEMPORAL LOGIC BASED SPEC-
IFICATION PATTERNS

In this section, we present formal specification patterns
for a set of typical safety and performance requirements in
smart cities. These requirements are based on our previous
work [9, 8], which are originally taken from public docu-
ments by U.S. Department of Transportation [3] and U.S.
Environmental Protection Agency [1]. Our goal is to provide
specification patterns as templates to help people write for-
mal specifications of smart cities more easily. For example,
smart city practitioners who are not familiar with temporal
logic can instantiate a specification pattern by filling in pa-
rameters of the requirement (e.g., locations, time intervals,
thresholds). It is expected that as new services are created
and deployed there will be a need for additional patterns.

3.1 Safety and Performance Specifications
We use STL [5] to write specification patterns. Table 1

shows a set of typical smart city safety and performance re-
quirements in transportation, emergency, and environment
services. For each requirement, we provide a specification
pattern written in STL. The instantiated specifications can
be used to monitor the operation of smart cities at runtime,
as shown in Figure 1.

The general template is 〈TL Operator〉〈time interval
〉〈event/action〉, where 〈TL Operator〉 denotes the operator
in temporal logic (e.g. Always, Eventually, Until), 〈time interval
is during which time this requirement sustains, 〈event/action〉
can be an action or event. In the following, we present tem-
plates for creating these specification patterns and describe
each specification pattern in detail.

3.1.1 Transportation.
We can use the following templates to generate STL spec-

ifications for transportation by filling in parameters of time
interval and event:

• Always〈time interval〉〈event〉, where 〈event〉 can be a
single objective (e.g., “no collision”) or furthered pa-
rameterized with the template
〈traffic efficiency metric〉〈threshold〉.

• Eventually〈time interval〉〈event〉, where event can be
the number of congested vehicles less than a thresh-
old.

• 〈action1〉Until〈time interval〉〈action2〉, where examples
of actions include turn a signal light for vehicles/pedestrians
to green/red.

R1 -R6 in Table 1 are examples of transportation specifi-
cations generated using these templates.

R1 is a safety requirement for vehicle collisions. Suppose
there is a binary signal Collision, which takes the value True
if a vehicle collision occurs. We can, therefore, write a spec-
ification �(¬Collision) to represent the safety requirement
that “No vehicle collision should occur”.

R2 is a performance requirement: “The number of vehicles
in a lane should never exceed its maximum capacity”. The
specification uses VehicleNumber(lane) and MaxCapacity(lane)
to represent two signals over a location variable lane, which
need to be instantiated.

R3 is a performance requirement that compares the traf-
fic congestion state over a time interval (a, b), which is mea-
sured by the number of vehicles waiting in a lane. The

specification uses signal Congestion(lane) to denote the traf-
fic congestion state in certain lane after the implementation
of some smart services. Congestion′(lane) is a constant ob-
tained from historical data, denoting the average previous
congestion state of that lane during that time.

R4 and R5 are very similar to R3, which are all perfor-
mance requirements measuring the vehicle traffic efficiency.
R4 is about the Yield (i.e., number of vehicles that are un-
able to cross an intersection where they do not have prior-
ity). R5 is about the average waiting time of vehicles in a
lane, denoted as WaitTime(lane).

R6 is a performance requirement about the pedestrian
traffic efficiency over a time interval (a, b). The specification
uses signal Pedestrian(i) to denote the number of pedestrians
waiting at an interaction i after the implementation of some
smart services. Pedestrian′(i) is a constant, denoting the
average number of pedestrians waiting in an interaction i.

3.1.2 Emergency.
We can use one of the following templates to generate STL

specifications for emergency services.

• Always〈time interval〉〈object〉〈metric〉〈threshold〉, where
the object, for example, can be an ambulance, police
car or fire fighter truck, and the metric can be response
time and waiting time.

• Eventually〈time interval〉〈action〉, where the action can
be response for an accident, or resolve an accident.

• 〈action1〉Until〈time interval〉〈action2〉, where examples
of actions include block a lane, and vehicle/pedestrian
moves in a direction/lane.

R7 -R9 in Table 1 are examples of emergency specifications
generated using such templates.

R7 uses signal EmergencyWaitTime(i) to denote the wait-
ing time of emergency vehicles at an interaction, which should
always be less than 10 seconds.

R8 uses two binary signals EmergencyDirection(lane) and
Blocked(lane) to represent whether the emergency vehicle is
directed to a certain lane and if a lane is blocked, respec-
tively. If both signals are True, then the emergency vehicle
is directed to a blocked lane, which violates the safety re-
quirement.

R9 uses Blocked(lane) and ¬Blocked(lane) to denote the
block and unblock of a lane. It also uses the Until operator
to bound the required time interval.

3.1.3 Environment.
The following template can be used to generate STL spec-

ifications for environment requirements:

• Always〈time interval〉〈metric〉〈threshold〉, where met-
rics can be the level of air pollution and noise.

• Eventually〈time interval〉〈metric〉〈threshold〉, where the
time interval can be used to control the time to reduce
the pollution level.

• 〈action1〉Until〈time interval〉〈action2〉, where examples
of actions include the level of air pollution reaching
a threshold or time and allowing vehicles crossing a
school area.

Table 1: Smart City Requirements (left) and Specification Patterns (right)
Transportation
R1: No vehicle collision should occur. �(¬Collision)
R2: The number of vehicles in a lane should never exceed its maximum vehicle capacity. �(VehicleNumber(lane) < MaxCapacity(lane))
R3: Traffic congestion in a lane should not increase by more than 10%. �(a,b)(Congestion(lane) < 1.1 ∗ Congestion′(lane))
R4: Traffic yield in a lane should not increase by more than 20%. �(a,b)(Yield(lane) < 1.2 ∗ Yield′(lane))
R5: The average waiting time of vehicles in a lane should not increase by more than 10%. �(a,b)(WaitTime(lane) < 1.1 ∗WaitTime′(lane))

R6: The number of pedestrians waiting in an intersection by more than 200%. �(a,b)(Pedestrian(i) < 2 ∗ Pedestrian′(i))
Emergency
R7: Emergency vehicles should not wait for more than 10s at an intersection. � (EmergencyWaitTime(i) < 10)
R8: Emergency vehicles should not be directed to a blocked lane or area. �¬(EmergencyDirection(lane) ∧ Blocked(lane))
R9: The highway blocked by an emergency accident should be unblocked within 30 min. Blocked(lane) U(1,30) (¬Blocked(lane))
Environment
R10: The noise level in a lane should always be less than 70 dB. �(a,b) (Noise(lane) < 70)

R11: The noise level in a lane should be reduced to less than 60 dB after some point. ♦(a,b) (Noise(lane) < 60)

R12: The carbon monoxide (CO) emission in a lane should always be no more than 50 mg. �(a,b) (CO(lane) < 50)

R13: The hydrocarbons (HC) emission in a lane should always be no more than 1 mg. �(a,b) (HC(lane) < 1)

R14: The particulate matter (PMx) emission in a lane should always be no more than 0.2 mg. �(a,b) (PMx(lane) < 0.2)
R15: The camera should be turned on and the illumination of street light should be set at
least level 3 within a time interval.

♦(a,b)(Camera(lane) ∧ Illumination(lane) > 3)

R10 -R15 are examples of environment specifications gen-
erated using these templates.

R10 and R11 are about the noise level, which use the
signal Noise(lane) to denote the noise level in a lane. Sim-
ilarly, R12, R13 and R14 use signals CO(lane), HC(lane)
and PMx(lane) to denote the carbon monoxide, hydrocar-
bons and particulate matter emission in a lane, respectively.
R15 uses a signal Camera(lane) to represent that the cam-
era is turned on and a signal Illumination(lane) to denote the
illumination levels of street lights. Note that the numeri-
cal thresholds used in these requirements are just example
parameter values and can be changed.

3.2 Smart Services Actions Conflicts
The safety and performance specifications listed in Ta-

ble 1 are all about the states of smart cities (e.g., traffic
congestion, air pollution). The actions of smart services can
have positive or negative effects on these city states, and
thus have the potential of leading to requirement violations
and service conflicts. In addition, smart services may is-
sue contradictory actions on the same actuator, which are
identified as device conflicts in [8]. There are three types of
device conflicts. We provide STL specification patterns for
each type as follows.

Opposite device conflicts occur when multiple smart ser-
vices issue opposite (binary) actions to the same actuator.
For example, smart traffic service turns a traffic light to
green, while smart pedestrian service requests the same light
to red. Let A1, A2, . . . , An be multiple boolean-valued ac-
tions issued on the same actuator. We can write a specifica-
tion �¬(A1⊕A2 · · ·⊕An) to detect opposite device conflicts,
where ⊕ denotes the exclusive or operator.

Numeric device conflicts occur when smart services is-
sue multiple actions with different numeric parameters. For
example, the smart energy service tries to set the illumi-
nation of street lights to level 1 to save energy, while the
smart safety service maintains it at level 3 because the cam-
era to monitor the community requires higher illumination.
Let A1, A2, . . . , An be multiple real-valued actions issued on
the same actuator. We can use the formal specification
�((A1 − A2 = 0) ∧ ... ∧ (An−1 − An = 0)) to monitor if
these actions assign the same numeric value.

Duration device conflicts occur when smart services re-
quire actions with different time intervals. Let Ai and Aj

be two actions. We consider three scenarios. First, Aj can-

Figure 2: Action conflict caused by Smart Traffic
Service (blue solid line) and Smart Emergency Ser-
vice (green dashed line). Action values of the traffic
signal (1: green, 0: red, -1: no action). The red
square highlights the detected action conflict.

not be taken within m steps after Ai. Formally, we write
Ai∧(�(1,m)¬Aj). An example is “Traffic light should not be
turned to green within 2 seconds after it is turned to red”.
Second, Aj cannot be taken until Ai stops (e.g., the street
should be kept blocked until the accident is resolved). The
formal specification is AiU(¬Ai ∧Aj). Third, we can write
Ai ∧ (♦(1,m)Aj) to represent the time dependence between
actions. For example, if the accident service blocks an area,
it should release blocking eventually within m steps.

4. CASE STUDY
The case study is based on a smart city simulator SUMO

[4], in which we have implemented six smart services (i.e.
Smart Traffic Service, Smart Pedestrian Service, Smart Event
Service, Smart Emergency Service, Smart Air Pollution Ser-
vice and Smart Noise Control Service. Please refer to [8] for
details.). The simulated smart city platform covers the lower
half of Manhattan with 102 streets and 454 traffic lights.
Simulation uses traffic data of Manhattan from 8:00 am to
2:00 am over about 6 months (9/28/2012 - 4/19/2013) [2].
We apply the Breach toolbox [5] for runtime monitoring.

Case 1: Monitor service action conflict.
In case 1, we consider two smart services. The smart traffic
service adjusts a traffic signal to optimize traffic and relieve
traffic congestion, while the smart emergency service re-
quests a green light when an emergency vehicle is approach-
ing. We monitor two traces of service actions on the same

Figure 3: Action of Smart Traffic Service causes
the conflicts and violations of environment require-
ments. (a) illustrates the action trace on a traffic
light (1: green, 0: red), while (b), (c), (d) and (e)
show the traces of CO, Noise, waiting time of emer-
gency vehicle and number of waiting pedestrian.
The red squares highlight the detected conflicts.

traffic light, as illustrated in Figure 2. We use the STL spec-
ification �¬(Ae = 0 ∧ At = 1) ∨ (Ae = 1 ∧ At = 0), where Ae

and At denote the actions of the emergency and traffic ser-
vices, respectively. The result of STL runtime monitoring
returns False and detects a device action conflict at time
24s (as highlighted in Figure 2). This is indeed a real de-
vice conflict. From time 1s to 10s, no action is taken by
the smart emergency service. From time 11s to 23s, both
services order the same action for a green light. However,
at time 24s, the smart traffic service turns the signal light
to red while the smart emergency service keeps it at green,
which are contradictory actions.

Case 2: Monitor the effect conflict from a single
service.
In this case, we monitor the effects on smart city states (CO,
Noise, waiting time of emergency vehicles and the number of
waiting pedestrians) caused by the action of the smart traffic
service. We instantiate four specifications R12, R10, R7, and
R6 from Table 1. The results of STL runtime monitoring
show that there are conflicts detected with R12 and R10,
while R7 and R6 are satisfied. Figure 3 illustrates the traces
of service actions and city states. Figure 3 (a) shows that,
at time 6s, the traffic light signal changes. Figure 3 (b) and

Figure 4: Conflict caused by Smart Traffic Service
and Smart Event Service. Traces of the number of
pedestrians waiting in an intersection, when there is
no smart service or event service only (blue dotted
line), traffic service only (green dashed line), or with
both services (purple solid line). The red square
highlights the detected conflict.

(c) show the traces of CO and Noise over time for R12 and
R10, both of which increase after the action of the smart
traffic service. At around time 25s, conflicts are reduced
with these two requirements (as highlighted by red squares
in the figures). Figure 3 (d) and (e) show the traces of
the waiting time of emergency vehicles and the number of
waiting pedestrians. There are no highlighted conflicts in
these traces, because both requirements are satisfied.

Case 3: Monitor the effect conflict from multi-
ple services.
In this case, we monitor the additive effects of smart traffic
service and the smart event service. We instantiate R6 from
Table 1, which says that the action should not increase the
number of pedestrians waiting at an intersection by 20%.
We simulate and monitor traces representing the number of
pedestrians waiting at an intersection when there is (1) no
smart service, (2) smart event service only, (3) smart traffic
service only, and (4) both services. These traces are drawn
in Figure 4, from which we make the following observations:

• The traces with no service and the one with smart
event service are overlapped (the blue dotted line), in-
dicating the smart event service has no effect on the
number of pedestrians by itself.

• The smart traffic services affect the number of pedes-
trians. Sometimes (e.g., in time 29s - 41s) it decreases
the number and sometimes it increases the number
(e.g., in time 97s - 145s), but it does not violate the
requirement.

• When running the smart traffic service and smart event
service simultaneously, the number of pedestrians in-
creases dramatically and violates the requirement at
around time 155s (as highlighted in the red square).

The smart event service does not affect pedestrians on its
own, because the service only blocks roads of vehicles rather
than pedestrians. However, when the smart traffic service is
running at the same time, it adjusts the traffic light based
on the traffic condition. In order to relieve the vehicle con-
gestion caused by a blocked street, the smart traffic service
may request the signal light of one direction to be green
for a longer time. As a result, pedestrians from the other
direction need to wait longer.

Figure 5: Simulated Manhattan with 5 smart ser-
vices running at 10 different locations

Table 2: Number of Conflict Detected in 1 hour
Requirement

T1
(5-6 am)

T2
(12-1 pm)

T3
(5-6 pm)

R5: Waiting Time 86 501 831
R6: Pedestrian 19 151 189
R7: Emergency 0 6 11
R10: Noise 53 421 483
R12: CO 91 360 520

Case 4: Monitoring large scale traces.
We also run experiments on traces simulated from 5 smart
services (e.g. S1, S2, S4, S5 and S6) and 10 locations over 3
hours, which involve 10 traffic signals and 118 lanes (see Fig-
ure 5). We choose three one-hour durations in the morning,
afternoon, and evening for diverse traffic conditions. The
traffic volume is lowest during T1 and highest during T3.
Table 2 shows the number of conflicts detected using these
traces for five requirements.

• The number of conflicts detected varied depending on
the time. During T1, there are less number of vehi-
cles and lower levels of noise and pollution, thus smart
services are not triggered as frequently as during T3,
when the traffic is congested. It also indicates the ne-
cessity of using runtime monitoring because the con-
flicts depend on the context.

• Although a large number of conflicts happened, some
of them last for an extended period and some of them
lasted only for a few seconds and then returned to
normal. For example, in the case of R5 during T3,
there are 831 conflicts detected. About 600 of these
conflicts last less than 5 seconds, which can be a good
indicator for conflict resolution.

• R5 and R6 are performance requirements, while R7,
R10 and R12 are safety requirements. In the case
of R7, although the number of conflicts is fewer than
other requirements, it is very important to detect them.

In summary, the experimental results of the above typical
cases demonstrate that we can use STL runtime monitoring
to detect various conflicts caused by smart services. Particu-
larly, runtime monitoring using STL helps detect that effect
conflicts took place after the occurrence of service actions
within a certain period. This is very useful for the conflict
detection, because effects of service actions often only be-
come observable after some time. In addition, STL runtime

monitoring is capable of detecting conflicts caused by the
additive effects of multiple smart services, which is difficult
to identify manually.

5. ACKNOWLEDGMENTS
This work was funded, in part, by NSF under grants CNS-

1527563 and CNS-1319302.

6. REFERENCES
[1] Air Quality Planning and Standards, U.S.

Environmental Protection Agency.
https://www3.epa.gov/airquality/index.html.

[2] New York City Open Data.
https://nycopendata.socrata.com/.

[3] Safety and Health, U.S. Department of Transportation.
https://www.transportation.gov/policy/
transportation-policy/safety.

[4] M. Behrisch, L. Bieker, J. Erdmann, and
D. Krajzewicz. Sumo–simulation of urban mobility: an
overview. In Proceedings of the 3rd International
Conference on Advances in System Simulation.
ThinkMind, 2011.

[5] A. Donzé and O. Maler. Robust satisfaction of
temporal logic over real-valued signals. In Proceedings
of International Conference on Formal Modeling and
Analysis of Timed Systems, pages 92–106, 2010.

[6] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar,
and W. Steiner. Arsenal: Automatic requirements
specification extraction from natural language. In
Proceedings of the 8th International Symposium on
NASA Formal Methods, pages 41–46, 2016.

[7] C.-J. M. Liang, B. F. Karlsson, N. D. Lane, F. Zhao,
J. Zhang, Z. Pan, Z. Li, and Y. Yu. Sift: building an
internet of safe things. In Proceedings of the 14th
International Conference on Information Processing in
Sensor Networks, pages 298–309, 2015.

[8] M. Ma, S. M. Preum, and J. A. Stankovic. Cityguard:
A watchdog for safety-aware conflict detection in
smart cities. In Proceedings of the Second
International Conference on Internet-of-Things Design
and Implementation, pages 259–270, 2017.

[9] M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed,
M. Ruiters, and J. Stankovic. Detection of runtime
conflicts among services in smart cities. In Proceedings
of IEEE International Conference on Smart
Computing, pages 1–10. IEEE, 2016.

[10] S. Munir, M. Ahmed, and J. Stankovic. Eyephy:
Detecting dependencies in cyber-physical system apps
due to human-in-the-loop. In Proceedings of the 12th
EAI International Conference on Mobile and
Ubiquitous Systems, pages 170–179, 2015.

[11] S. Munir and J. Stankovic. Depsys: Dependency aware
integration of cyber-physical systems for smart homes.
In Proceedings of ACM/IEEE International
Conference on Cyber-Physical Systems, 2014.

[12] S. M. Preum, A. S. Mondol, M. Ma, H. Wang, and
J. A. Stankovic. Preclude: Conflict detection in
textual health advice. In Proceedings of IEEE
International Conference on Pervasive Computing and
Communications, pages 286–296. IEEE, 2017.

[13] I. UK Government Department for Business and
Skills. Smart cities - background paper, 2013.

