
208

PhysiQ: Off-siteQuality Assessment of Exercise in Physical Therapy
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Physical therapy (PT) is crucial for patients to restore and maintain mobility, function, and well-being. Many on-site activities
and body exercises are performed under the supervision of therapists or clinicians. However, the postures of some exercises at
home cannot be performed accurately due to the lack of supervision, quality assessment, and self-correction. Therefore, in this
paper, we design a new framework, PhysiQ, that continuously tracks and quantitatively measures people’s off-site exercise
activity through passive sensory detection. In the framework, we create a novel multi-task spatio-temporal Siamese Neural
Network that measures the absolute quality through classification and relative quality based on an individual’s PT progress
through similarity comparison. PhysiQ digitizes and evaluates exercises in three different metrics: range of motions, stability,
and repetition. We collect and annotate 31 participants’ motion data with different levels of quality. Evaluation results show
that PhysiQ recognizes the nuances in exercises, works with different numbers of repetitions, and achieves an accuracy of
89.67% in detecting levels of exercise quality and an average R-squared correlation of 0.949 in similarity comparison.
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1 INTRODUCTION
Physical therapy (PT) is a process in which patients regain their strength through exercises after surgery, incidents,
or illness. It benefits patients by reducing pain, improving mobility, preventing further injury, and improving
muscle balance. Patients undergo challenges, endeavors, and struggles with lasting benefits with well-prescribed
instruction and supervision. Currently, there are more than 5.1 billion Years Lived with Disability (YLDs)1 growth
per year [23]. In the U.S., there are 38,800 physical therapy clinics operating and an average of 150 patients in
each clinic each week, with approximately 300 million sessions for patients each year [43]. Usually, patients
require extensive sets of exercise to return to regular activities. However, they usually have limited time in
clinics with supervision under physical therapists, and are required to perform exercises by themselves at home.
Nevertheless, patients have very little knowledge of how well they perform without monitoring or supervision.
Moreover, they do not have the flexibility and convenience to set up a camera to self-monitor [46]. Therefore,
having a quantitative measurement of the quality of exercises with wearable devices for patients and therapists
is crucial to support the patients get their wellness back.
1This measures the impact of an illness before it resolves or leads to death
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1.1 Motivation
To improve effective rehabilitation, self-efficacy, self-motivation, social support, intentions, and previous adherence
to physical therapies can help patients perform exercises in home-based physical therapy [14]. However, there
is a considerable gap existing between how patients perform self-monitored offsite therapeutic and clinically
supervised exercises. Patients and their therapists have no effective and convenient way to track exercises
quantitatively at home.
Human Activity Recognition (HAR) in wearable devices is a prevalent research topic that includes many

day-to-day locational, behavioral, and planning recognition. For instance, handwashing [50], finger gestures
[11], eating behavior [5], and daily activities (writing, cooking, and cleaning) [3] improve to recognize activities
through wearable technologies. However, although these works meet the need for daily human activities, a
limited attempt exists to help therapeutic rehabilitation for patients.
Moreover, existing works on the quality of exercise utilize vision-based devices, such as cameras, K2 Kinect

[17, 36], to track the quality of exercises and provide simple feedback. However, users must set them up physically
and potentially interfere with the occlusion of the camera. Moreover, calibrating and adjusting the vision-based
devices are costly and inconvenient for injured or immobile people. Therefore, there is a need in providing
portable and wearable devices to measure the quality of exercises.
Lastly, attempts on wearable devices to track quality, such as calorie intake [21] and gait authentication [37],

suggest the endeavors to use wearable sensors to track the quality of exercises. Ghanashyama et al. attempt to
use deep learning models to recognize and count the repetitions of exercises using a single sensor [39]. However,
the qualitative pieces of information are not therapeutic metrics to help rehabilitation.

In summary, there is a high demand to improve how patients and users quantitatively measure their exercises
offsite with meaningful feedback with wearable devices.

1.2 Challenges
There are three significant challenges in designing such a framework. First, how to digitize physical metrics is
an open question. To the best of our knowledge, there is no existing systems or models measuring the quality
of an activity, and existing models are not sophisticated enough to directly return a quantitative measurement.
Secondly, the quality of exercise varies for different people of different ages, heights, weights, and gender. For
example, a tall person has a long traveling distance of shoulder abduction exercise because of his height and arm
lengths. Suppose someone of average height performs the same PT exercise with the same range of motion, the
model is supposed to be able to tell the difference and similarity even though their heights are different. Similarly,
suppose an elder performs differently than a teenager in a PT exercise; even though their objective quality differs,
quality should remain the same if they raise their arm to 90 degrees compared to 60 degrees. Lastly, there are no
existing datasets with annotated quality of exercise.

1.3 Contributions
Targeting these challenges, this paper introduces a novel framework, PhysiQ, that continuously tracks and
quantitatively measures people’s off-site exercise activity through passive sensory detection. The framework
is robust and general to handle users who perform exercises with different speeds, positions, and postures. We
summarize our main contributions below:

• To the best of our knowledge, this is the first framework for quantitative measurement of exercises using a
smartwatch. The framework identifies and digitalizes three key exercise metrics of range of motion, stability,
repetition, which are built upon the muscular system for understanding the functionality of the skeletal
system.
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• We create a novel multi-task spatio-temporal Siamese Neural Network that measures both absolute quality
and relative quality based on an individual’s PT progress through similarity comparison. It enables patients
to understand the quality of their offsite exercises over time.

• We build an application collecting users’ motion data in a smartwatch and giving explainable feedback
with recommendations based on their quality of exercises in real-time.

• We collect and annotate 31 participants’ motion data with different levels of stability, range of motion,
and repetition, in three shoulder exercises, which are shoulder abduction, external rotation, and forward
flexion.

• We perform extensive evaluation using real user’s data. Results show that our framework performance
outperforms the baselines by 47.67% on average in R-Squared for all exercises and all three metrics. We
also provide insights of how user’s behaviors influence the framework through a user experience study.

1.4 Paper Organization
In the rest of the paper, we discuss the related work in Section 2. We present our framework PhysiQ in Section
3. Next, we show how we collect the exercise data with different quality in Section 4, and evaluation results
in Section 5. Furthermore, we present a survey and discuss user experience using our app and implications in
Section 6, followed by a discussion and summary in Section 7 and Section 8, respectively.

2 RELATED WORK
In this section, we present existing literature on state-of-the-art measuring the quality of activity and applications,
and deep learning methods for these applications through similarity comparison and other methods.

2.1 MeasuringQuality of Activity
Though there does not exist a field of such, Human Activity Quality Recognition (HAQR) is a critical research
question for real-world application. Therefore, we have gathered and scrutinized related works in state-of-the-arts.
For example, one quality in exercises is repetition counting. Work, such as [47], focuses on multi-modality to
provide a more accurate result of repetitions counting and exercise recognition. A fascinating work done by
Radhakrishnan et al. focuses on using in-ear devices such as wireless headphones fusing with inertial measurement
units to quantify insights and feedback in gym exercises [40].
Additionally, one work uses smart speakers to analyze the duration, intensity, continuity, and smoothness

of exercises at home [56]. However, such work requires people to have knowledge about exercises and some
level of proximity to the actual devices. Additionally, IMUTube introduces how to simulate virtual IMU data from
video [26]. Kwon et al. utilizes video to simulate IMU through a number of off-the-shelf computer vision and
graphics techniques. Furthermore, Radhakrishnan et al. suggest a system that uses a magnetic accelerometer
sensor. The device is mounted on the weight stack of a gym machine to infer exercise behavior using multiple
machine learning models to identify the person, amount of weights, type of exercise, and mistakes [41].
Like the quality of exercises, sleep quality analyzes humans’ brain activity through Electroencephalography

(EEG) signal. It categorizes the level of sleep activity in Rapid Eye Movement (REM), Non-REM, S2 (light sleep),
and S3 (slow-wave sleep). Additionally, polysomnography is considered the standard methodology for detecting
the sleep pattern with carefully analyzed records of epochs [12]. There are two leading technologies for sleep
monitoring: portable and contact. Portable devices such as smartwatches or smartphones seamlessly collect users’
data through passive means. Contact devices are medical-level tools to collect reliable data through less passive
means [12].

Portable devices require stationary devices to record the daily routine of the subjects [6, 30, 31, 44, 48]. These
works include signals of accelerometer data to approximate respiration rate and heart rate through, for example,
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sound recording to validate sleep time and duration, and electrocardiogram (ECG) signal to proximate heart
rate and distinguish threshold for sleeping and waking. Contact devices, which require direct contact with the
subjects, are the cases of PPG, EEG, and Actigraphy. These assessment technologies have the main advantage of
accurately sampling the human body’s physiological and mechanical signals. However, such devices are perceived
as obtrusive due to their limited portability and transparency. Sleep quality recognition and detection using
contact devices have been well studied. One research targets whether having additional information such as age
and sleep stage information can distinguish abnormality using the deep learning method on EEG signal data [49].
Other research focuses on developing an automatic sleep staging method in EGG signals, in which the author
proposes multi-epoch methods to segment and encodes the feature and re-concatenate to predict its sleep stage
[29]. Lastly, one aims to develop a sleep scoring toolbox with the competency of multi-signal processes, feature
extraction, and classification and prediction but only using a simple logic-feature-based method to differentiate
sleep stage [57].

2.2 Deep Learning Models for Quality Measurements
Siamese Neural Network (SNN), utilizing two identical networks, is commonly applied to compare if two
subjects are same or not. Typical tasks include image classification, object recognition, and object tracking
[13, 16, 18, 28, 45, 51]. However, it only returns a binary result (i.e., True or False) without a quantitative
measurement.
Furthermore, recognizing similarities in 1-D signal data, such as radar, speech, and natural language process

(NLP) [2, 15, 32, 35], has also gained many usages in different applications. An intriguing application stands
out using semantic similarity between sentences, supplementing recurrent neural networks with synonymic
encoding. Mueller et al. use LSTM to encode the different length inputs with its positional encoder to analyze
the semantic similarity with an outstandingly high Pearson correlation of 0.8822 [33]. Furthermore, A deep
dive evaluation of the SNN proposes a residual module to reduce learning biases caused by padding [58]. The
determinant factors, such as stride, padding, and receptive field size (the size of the region that produces the
feature), are crucial to the performance of the SNN. Additionally, Lawrence et al. suggest an innovative way of
utilizing spatial and temporal aspects from videos to recognize human emotions is inspiring. [27]. Lastly, Agrawal
et al. use an inventive way to calculate articles’ similarity distance for political stance using discrete labeling of
relatedness [1].
Additionally, it is worth mentioning a self-supervised method called contrastive learning. It is a technique

to learn the general features of a dataset without labels by telling what data points are similar or dissimilar.
The reason why this is important to us is that the similarity of the task is to recognize the similarity. However,
the goal might differ for contrastive learning due to their limited dataset or no handcrafted labeling. Several
interesting works related to SimCLR, SIMCLRv2, and MoCo (momentum contrast) are fine-tuning with a few
labeled examples to achieve high accuracy [8, 10, 19]. These works are essential in unsupervised learning fields
and provide highly accurate and efficient solutions. Additionally, an audio similarity work is being introduced to
assign high similarity to the audio segment from the same recording while assigning low similarity to different
segments from di qfferent recordings [42].

In summary, these systems and applications measure the quality of words, speech, sleep, and emotion. However,
none of them standardizes the metrics of exercises through the muscular system. PhysiQ recognizes therapeutic
exercises and digitalizes the exercises to provide feedback through the metrics and compare exercises using deep
learning methods.

3 SOLUTIONS
We build PhysiQ to continuously monitor users’ off-site exercise activity and quantitatively measure the quality.
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(a) Exercise Qualitative
Feedback on Patients’ GUI

(b) TO-DO list on Patients’
GUI

(c) Doctors’ GUI on
Patients’ tasks

Fig. 1. PhysiQ on Smartphone Graphical User Interface (GUI) for patients and doctors. Leftmost GUI demonstrates the
patients’ progress tab and how they make progress throughout the months; rightmost GUI demonstrates the doctor’ tab to
monitor patients’ results and how much they improve or aggravate with visualization of the data.

We particularly measure the quality of exercises in three metrics of range of motion, stability, and repetition.
The framework is shown in Fig. 2. PhysiQ apps run on three platforms. Users first perform activities wearing a
smartwatch. The PhysiQ app on the smartwatch extracts the sensory data and syncs the data with the smartphone
and cloud in real-time. Then, the model on the cloud generates scores for the exercises in different manners, such
as range of motion and stability. Based on the scores, the model sends feedback, such as, “The score for a range
of motion of this exercise is 150, which means you did a good job on range of motion. ” and recommendations,
such as “You could do 3 more repetitions!” on the PhysiQ app on user’s smartphone. Meanwhile, it also uploads
the user’s progress to the cloud for the therapist to review. We present some of the graphical user interfaces
(GUI) of our app on the phone in Figure 1. In the rest of this section, we first formalize our problem, then present
how we digitalize the exercise metrics on sensory data, and finally elaborate on the details of our multi-task
spatio-temporal SNN-based quality measurement model.

3.1 Problem Formulation
We formalize the problem as follows: given the smartwatch with built-in IMU sensors, it returns the input of IMU
sensory data X𝑗

𝑖
by 𝑗-th participant and 𝑖-th sample. Each data X𝑗 contains 𝑇 𝑗 number of samples {𝑥 𝑗1 , ..., 𝑥

𝑗

𝑇 𝑗 }.
Each 𝑥 𝑗

𝑖
is comprised of 3-axis of accelerometer data (𝐴𝑥 , 𝐴𝑦, 𝐴𝑧) and 3-axis of gyroscope data (𝐺𝑥 ,𝐺𝑦,𝐺𝑧). Our

model outputs a similarity score 𝑠 .
We further divide our problem into three folds for three metrics:
(1) Our problem input is 𝑥 𝑗

𝑖
and output is a set of 𝑋 ′ = {𝑥 ′} with 𝑥 ′ represents one repetition and 𝑛 represents

total repetitions.
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Fig. 2. Overview of PhysiQ framework

(2) In range of motion metrics, we divide it into an absolute and relative values. First, we formalize our problem
under the same problem of input sensory data, 𝑥 ′ ∈ X𝑗

𝑖
. In absolute value, for each 𝑥 ′, we define 𝑦𝑟𝑜𝑚 (𝑥 ′) as

the absolute score of range of motion. Secondly, in relative value, we define the relative value, 𝑠𝑟𝑜𝑚 (𝑥 ′𝑖 , 𝑥 ′𝑖∗), as
similarity score under range of motion metrics, where 𝑖∗ is the anchor exercise’s index.

(3) For 𝑥 ′ ∈ X𝑗
𝑖
, We define the relative value, 𝑠𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥 ′𝑖 , 𝑥 ′𝑖∗), as similarity score of stability metrics.

3.2 Digitalizing Exercise Metrics and Ground Truth
3.2.1 Repetition. We implement a novel energy function to segment the exercise’s repetitions. We calculate the
energy as shown below:

𝐸 (𝑖) = 1
𝑓𝑠 + 1

(
ℎ(𝑖) +

𝑇∑︁
𝑛=−𝑇

√︁
ℎ(𝑛 + 𝑖)

)
,where 𝑓𝑠 = 50𝐻𝑧,𝑇 =

𝑓𝑠_𝑁

2000
(1)

ℎ(𝑖) = |𝐴𝑥 (𝑖) ∗𝑊 𝑥 | + |𝐴𝑦 (𝑖) ∗𝑊 𝑦 | + |𝐴𝑧 (𝑖) ∗𝑊 𝑧 | (2)

In the formula above, 𝑖 is the positional index to calculate the energy throughout the signals, and 𝑁 is the actual
length of the signals in 10 repetitions. As shown in Fig. 3, we use this method of calculation to find the cutting
position to semi-automatically segment the signal of 10 repetitions to the numbers of 1 repetition. Noted, since
some exercises have a low and high amplitude signal, we use hyper-parameters𝑊 𝑥 ,𝑊 𝑦,𝑊 𝑧 , and _ weights to
adjust the smoothness of the energy. The purpose of the energy is to merge two peak from previous and next
repetition to form a significant energy level to identify the cutting position. As a result, a good hyper-parameters
are required to pre-process the segmentation of the data.

3.2.2 Range of Motion. After using the energy method to segment the signal of participants’ exercises, we
annotate each exercise according to its labels and positions. In our case, we have three potential labels: range of
motion, stability, and repetition. We modify our method to generate stability using the Equation 3 as our ground
truth for stability. Range of motion metric is collected through participants’ exercises under the supervision’s of
experimenters. We examine the participants’ range of motion as they performed and verify with recorded videos.
Repetition is labeled based on the number of repetitions merged together. We target one particular exercise to
build our framework and use two additional exercises to verify its competency: shoulder abduction (SA), external
rotation (ER), and forward flexion (FF). We explain the process in Section 5. Due to different muscle activation of
range of motion, we examine shoulder abduction as our initial exercise to design our metrics and framework.
Additionally, we classify shoulder exercises into two main categories: half arm span (HAS) and half-half arm span
(HHAS). HAS contains exercises that require both forearm and arm into motion. HHAS only requires forearm or
arm into motion.
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(a) Energy Plot with Accelerometer Data (b) Potential Cutting Position with Energy Plot

Fig. 3. These two figures show how the energy plot suggests the cutting positions for the repetition of 10 exercises. For Fig. 3a,
the energy is plotted in a red dashed line. The specialist manually does the exercises’ beginning and ending cut-off procedure.
In Fig. 3b, we change the original data colors to black and emphasize the color of the cutting position for segmentation and
energy plot for visualization purposes.

Fig. 4. Exercises Metrics: we first identify the type of exercise to perform and which sensory data is collected. Based on
the signal data gathered from participants, we measure them against our metrics. The framework assesses the quality of
exercises based on the range of motion, stability, and repetition.

In shoulder abduction exercise, it involves the glenohumeral joint and scapulothoracic articulation in different
range of motion. At first 20 to 30 degrees of motion, subjects do not use the scapulothoracic joint motion, and the
supraspinatus tendon should be the only muscle helping during this. Deltoid muscles are activated to support
from 30 to 120 degrees of range of motion. Lastly, beyond 120 degrees, a full abduction is considered when the
arm is externally rotated with the humerus activating. Different range with different muscles activation inspires
us to finalize five different range of motion and stability (we mentioned on how to create stability in Section 4) as
our categories to understand the quality of exercises with Fig. 5 [52–55].
Range of Motion for HAS Exercise Muscular Activation

• 30 degree ROM: supraspinatus muscles
• 60 degree ROM: deltoid muscles

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 4, Article 208. Publication date: December 2022.
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(a) Shoulder anatomy, front view (b) Serratus anterior muscle

(c) Deltoid muscle (d) Trapezius muscle

Fig. 5. This is a visualization of how shoulder with joints, tendons, and muscles work in a close look [52–55].

• 90 degree ROM: deltoid muscles, transition to trapezius muscle
• 120 degree ROM: trapezius and serratus anterior muscle
• 150 degree ROM: trapezius, serratus anterior muscle, and humerus activation

In external rotation exercise, the rotator cuff is used to perform this exercise. The rotator cuff consists of
four muscles that stabilize the shoulder in external rotation, infraspinatus, teres minor, supraspinatus, and
subscapularis as shown in Fig. 5. As in external rotation, the infraspinatus muscle stabilizes the shoulder joint
and acts as the prime mover in this exercise [22].
Range of Motion for HHAS Exercise Muscular Activation

• 45 degree ROM: minimally infraspinatus muscle
• 90 degree ROM: infraspinatus muscle, posterior deltoid
• 150 degree ROM: infraspinatus muscle, posterior deltoid, and all other muscles in rotator cuff.

Similarly, in forward flexion exercise, the muscle activation includes supraspinatus, infraspinatus, and anterior
deltoid. We classify range of motion into 5 similarly to shoulder abduction because these two exercises are
considered half arm span exercise.
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Fig. 6. Multi-task Spatio-temporal SNN: First of all, we have 2 one repetition exercises feed into our network as signal and
anchor exercise. Signal exercise can be compared against anchor and vice versa. After Sliding Windows Segmentation, Spatial
and Temporal encoding, we feed our model into an attention mechanism. Finally, we compare these two hidden features
representation and output its similarity score using cosine similarity. Additionally, the hidden feature of the signal exercise is
processed into a MLP network to get result of classification based on the metrics of range of motion, stability, or repetition.

3.2.3 Stability. Initially, we defined our ground truth of stability using resistance bands relative to the participants’
strength. For example, if the participant is strong, we progressively find his or her maximum strength with the
resistance band and create two different instability based on that, labeled as two classes. However, this method
does not guarantee that stability correlates with the levels of resistance bands. Furthermore, as we visualize
and evaluate it, we do not find the difference between the two different resistance bands. Therefore, we define
the stability metrics using a low pass filter and coefficient of variation through a mathematical methodology.
By doing so, we can measure stability of all the exercises performed by participants. Low pass filter is used to
differentiate what is human motion and signal noise since our IMU sensors captures at 50 Hz. As suggested by
Khusainov et al., human activity frequencies are between 0 and 20 Hz, and 98% are below 10 Hz [25]. Therefore,
for maximal capturing of stability, we use 20 Hz as our parameter for the low pass filter function.

𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆) = 𝑇𝑎𝑛ℎ ( | 𝐶𝑉 (lps(𝑆, f=20)) |) ,where 𝑆 = [𝐴𝑥 , 𝐴𝑦, 𝐴𝑧,𝐺𝑥 ,𝐺𝑦,𝐺𝑧].T (3)

𝐶𝑉 (𝑆) = `𝑆

𝜎𝑆
(4)
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In the formula above, the lps represents the trivial low pass filter function we used to filter some noises.
Stability Muscular Activation

• 0.0 stability: stable and perform normal exercises
• in-between 0.0-1.0 stability: rotator cuff
• 1.0 stability: (unstable) supraspinatus, infraspinatus, teres minor, and subscapularis

3.3 Spatio-temporal Feature Representation
As shown in Fig. 6, we develop a method of combining spatial and temporal representation to recognize the shape
of signals of exercises [4, 7, 34, 38]. We use attention mechanism as a method of message passing to understand
relationships in different the hidden features of sliding windows segments in one repetition.

To discern and recognize the details of the signals and find the correlation between metrics and exercises, we
tackle the problem in two different aspects: time and space. The exercises performed by users are the input of
temporal signals. The signals result in a pattern in space to depict different angles of the exercises.
We build a CNN-based spatial encoder as:

𝐶𝑁𝑁 (𝑤) = (𝜎 (𝑠𝑢𝑚(𝑊1 ⊙𝑤) + 𝑏1), . . . , 𝜎 (𝑠𝑢𝑚(𝑊𝑛 ⊙𝑤) + 𝑏𝑛)), (5)
where𝑊1,𝑊2, . . . ,𝑊𝑛 are learnable weights matrices, 𝑏1, 𝑏2, . . . , 𝑏𝑛 are biases, ⊙ is element-wise multiplication,
𝑠𝑢𝑚 is element-wise summation, and 𝜎 is the activation function such as ReLu. CNN is capable of effectively
interpreting spatial information and transforming it into a hidden pattern. It has the potential to compress
information to represent into a smaller space, and it is very effective to compress sliding windows of signals.
This provides a feature extraction mechanism across windows with specific weight matrices and biases. What is
important in spatial encoding is by using a feature extraction method, our model can interpret the importance of
each window given its features. Additionally, a max pooling is applied in our CNN model to reduce the signal’s
dimension.
However, understanding the features in each window is not enough to distinguish any temporal knowledge

due to the property of time series, such as trends, and seasonal or non-seasonal cycles. Next, we employ Long
Short Term Memory networks (LSTM) for temporal encoding as [20]:

𝑓𝑡 = 𝜎 (𝑊𝑓 𝑥𝑡 +𝑈𝑓 ℎ𝑡−1 + 𝑏 𝑓 ) (6)
𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖 ) (7)
𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜 ) (8)
𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐 ) (9)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐𝑡 (10)
ℎ𝑟𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡 ), (11)

where,𝑈 𝑊 , and 𝑏 are weights and biases that is not time dependent, 𝜎 is a sigmoid activation function, and
𝑖 ,𝑓 ,𝑜 are input, forget, and output gates respectively. Lastly, 𝑐 and ℎ are the cell and hidden states vector given
the time 𝑡 .

Next, attention mechanism on a set of queries, keys of dimension 𝑑𝑘 , and values are calculated using the matrix
of output as shown below:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (12)
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Instead of performing one attention function, we apply multi-head attention where head is the number of
paralleled attention mechanism. Multi-head attention allows our model to attend information with different
representation at different locations in time and space. We use 𝐻 as the number of head in multi-head attention:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (13)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (14)

In our work, we use 𝐻 = 16 heads of paralleled attention layers. Additionally, we use 𝑑𝑚𝑜𝑑𝑒𝑙 = 256; therefore,
each 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/𝐻 = 16.

As a result, we describe our model, PhysiQ. It takes advantage of the fact that every sliding windows𝑤 of size
𝑘 x 6 can be interpreted as a frame in time. Using this, we feed each window𝑤 into the CNN to output ℎ𝑐 as 𝑧𝑐
x 1. Additionally, we feed ℎ𝑐 into LSTM to get ℎ𝑟 with a size of 𝑧𝑟 x 1. The LSTM creates a sequence of hidden
states [ℎ𝑟0, . . . , ℎ𝑟𝑛], acted similar to a positional encoding to understand the temporal information. We pass the
sequence into the attention mechanism returning our hidden representation, 𝐴 that has both temporal spatial
information, and relational message passing knowledge.

Algorithm 1 PhysiQ Framework Encoder
1: Def: 𝐴 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝑒), s.t. exercise segment 𝑒 passes in, return 𝐴, where 𝐴 has 𝑛 number of hidden

presentation as ℎ𝑟0, . . . , ℎ
𝑟
𝑛−1

2: Input: 𝑒 , exercise segment
3: Output: 𝐴, hidden representation of one exercise segment
4: 𝑤0,𝑤1, . . . ,𝑤𝑛−1 = 𝑆𝐿𝐼𝐷𝐸 (𝑒)
𝑆𝐿𝐼𝐷𝐸 takes an exercise 𝑒 and return𝑊 , where𝑊 is the size of 𝑛 x 𝑘 x 6, 𝑛 number of sliding windows.

5: 𝑊 = 𝑤0,𝑤1, . . . ,𝑤𝑛−1
6: for each𝑤𝑖 in𝑊 do
7: ℎ𝑐𝑖 = 𝐶𝑁𝑁 (𝑤𝑖 )
8: ℎ𝑟𝑖 = 𝐿𝑆𝑇𝑀 (ℎ𝑐𝑖 )
9: end for
10: 𝐻 = [ℎ𝑟0, ℎ𝑟1, . . . , ℎ𝑟𝑛−1]
11: 𝐴 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻,𝐻,𝐻 )
12: return 𝐴

Algorithm 2 PhysiQ Similarity Comparison
1: Def: 𝑠𝑖 𝑗 = 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝐼𝑇𝑌 (𝑒𝑖 , 𝑒 𝑗 ), where 𝑠 is the similarity score and 𝑒 is the signal segment
2: Input: 𝑒𝑖 , 𝑒 𝑗 , a pair of exercise segments
3: Output: 𝑠𝑖 𝑗 is the similarity score between a pair of exercises
4: 𝐴𝑖 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝑒𝑖 )
5: 𝐴 𝑗 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝑒 𝑗 )
6: 𝑠𝑖 𝑗 = 𝐶𝑜𝑠𝑖𝑛𝑒 (𝐴𝑖 , 𝐴 𝑗 ) = 𝐴𝑖 · 𝐴 𝑗/| |𝐴𝑖 | | ∗ | |𝐴 𝑗 | |
7: return 𝑠𝑖 𝑗
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3.4 Similarity Comparison
The supervised learning framework has recently improved dramatically on 1-D and 2-D healthcare signal
processing tasks. However, it does not leverage the framework to understand the relationship between the inputs.
Significantly, how can patients improve without an anchor comparison from the previous performance? By
comparing their day-to-day performance, PhysiQ understands whether participants enhance their performance
based on the result of their exercises and how the patients are improving. To address this issue, we utilize the
Siamese Neural Network, a type of contrastive learning framework that can extract useful features from data
itself without the need for large handcrafted labels. On top of that, we design a data collection strategy to gather
multi-modality of data for future evaluation analysis.

Siamese Neural Network (SNN) is a neural network that shares and contains two identical networks with the
same configuration and the sharing of the weights. The identical model is used to find the similarity between
two inputs. At the same time, the advantages of the SNN are more robust to the class imbalance in the data,
learning a tremendous hidden and embedding deeply semantic similarity; however, it does not necessarily output
probabilities but the distance between classes. We re-design the network and make it to fit the problem of
reference comparison in Fig. 4. We formulate a regressive distance between two exercises as the ground truth
label to train SNN with a prior assumption of a maximum of the range of motion of 𝑅 in shoulder abduction, as
shown below:

𝑠𝑟𝑜𝑚 (𝑚𝑎,𝑚𝑏) = 1 − |𝑚𝑎

𝑅
− 𝑚𝑏

𝑅
| (15)

With the Equation 3 to get the signal’s stability, we can measure the similarity:

𝑠𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆𝑎, 𝑆𝑏) = 1 − |𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆𝑏) − 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆𝑏) | (16)

Lastly, with the assumption of maximum of repetition𝑀 , we can measure the similarity of repetition:

𝑠𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 (𝑟𝑎, 𝑟𝑏) = 1 − | 𝑟𝑎
𝑀

− 𝑟𝑏

𝑀
|, (17)

where 𝑟𝑎 , 𝑟𝑏 represent the number of repetitions of signal and anchor exercise.
The SNN is very popular and used to solve various problems in research. However, to accommodate our specific

problem, we aim to improve our accuracy by carefully designing our feature extraction in spatial and temporal
aspects. Therefore, we adapt the SNN for our signal comparison because there is an underlying knowledge and
information that the deep learning method interprets and understands. Additionally, we leverage the temporal
encoding, spatial encoding, and attention mechanism to generalize the model with our metrics. Additionally, we
use cosine similarity as our similarity measurement because of its ability to differentiate orientation distance
between two encoded exercise features.

4 DATA COLLECTION

4.1 Type of Exercises
Selecting well-represented exercises is very crucial to our problem because the exercise itself should have the
quality of repetitiveness, singularity (a defined beginning and ending), reconstructiveness (an exercise that can
reshape part of a person’s body as an improvement), and representativeness (can cover many parts of the muscles).
Therefore, considering these factors, we conduct our evaluation of these three exercises, as shown in Fig. 7:

• Shoulder Abduction: The shoulder abduction is an exercise that requires subjects to stand straight with
both hands tucking on the side of the legs as the starting point. Subjects perform the exercise by raising
the instructed arm to a certain degree of motion and straightening the arm. Once the subjects reach the
stopping point, they drop their arm steadily, as it is similar to raising their arms.
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(a) Shoulder Abduction (b) External Rotation

(c) Forward Flexion

Fig. 7. Three Exercises: The exercise on the top left is one repetition of shoulder abduction, the exercise on the top right is
one repetition of external rotation, and the exercise on the bottom is forward flexion. Also noted that we define greater equal
than 150 degree of motion as 150 on the shoulder abduction and forward flexion.

• External Rotation: The external rotation has two components. First, the upper arm (bicep and tricep) tucks
in the armpit while rotating the arm externally and keeping the lower arm raised to about 90 degrees,
perpendicular to the chest or abdominal. Secondly, the arm should move horizontally and stop at a certain
degree of motion or to the full ROM, where the subject’s shoulder should feel a sense of blocking by the
joints.

• Forward Flexion: The forward flexion is similar to shoulder abduction but different in direction. Subjects
perform the exercise by raising the arm slowly forward, reaching the point of ROM, then consistently
lowering the arm to the beginning position.

We simplify our problem as a preliminary examination from the description we mentioned above. Each exercise
has its advantage and weakness. As a result, shoulder abduction, external rotation, and forward flexion have
aspects that we look for in exercises, including subjects not needing to lie down and wear a smartwatch on the leg
to perform exercises in initial modeling. Additionally, we choose shoulder abduction as our first exercise to test
our framework, PhysiQ, because shoulder abduction has all the factors we considered: repeating in sets, singular
in the beginning and ending, reconstructing people’s bodies, and targeting many muscles around the shoulder. It
requires extensive time and resources to find the participants during the pandemics, and the quality of data is
varied based on the subjects because we minimize how much we tell the subjects to perform the exercises while
giving enough details on reaching different stop points of degrees in motions and instability. In order to perform
the metric of range of motion, stability, and repetition, we see how robust our model is and in what scenario it can
handle and fail.
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4.2 Data Statistics
In total, we have 1550 segmented one repetition exercise of range of motion (ROM) and 1170 segmented one
repetition exercise of stability for shoulder abduction. At the same time, we have 600 segmented one repetition
exercises of ROMs for external rotation. Additionally, the third exercise, forward flexion, has 650 segmented one
repetition data. In total, we have collected 31 participants for all data collection in different evaluation periods.
In additional, we have 31 participants from shoulder abduction, 24 participants from external rotation, and
11 participants from forward flexion. The metrics of range of motion is labeled as we collect the data, and the
stability is generated using our method as shown in Equation 3. The metric of repetition is utilized through our
energy segmentation and merged based on the number of repetitions for evaluation. We can form any number of
repetition by combining the adjacent neighbors of segmented repetitions.
In SNN, we create pairs of inputs for similarity comparison in one repetition exercise of range of motion,

stability, and repetition. Therefore, we define the problem as no comparison between subjects, only the comparison
of exercises within one particular subject at a time, because with the presumably perfect anchor exercise, it is a
relative measure of the similarity of the signal exercise on a particular user.

Table 1. Participants information

Attribute Male Female avg std

Gender 17 14 N.A. N.A.
Age 18-25 18-44 22.32 4.77

Height (cm) 167.6-190.5 149.8-182.9 173.6 10.27
Weight (kg) 54.4-108.8 45.3-88.9 67.31 15.90

Previously Shoulder Injures 2 1 N.A. N.A.

5 EVALUATION
We evaluate PhysiQ from three perspectives: model performance in exercises, generalizability in different metrics,
and importance of components in the model. We compare the overall performance of the framework with different
types of baseline and how the model performs in different exercises and metrics. We explain the design and set
up in Section 5.1, 5.2. Additionally, we test our model performance and generalizability in Section 5.4. Lastly, we
evaluate our model’s components in Section 5.5 and Section 5.6.

5.1 Implementation
We implement the PhysiQ application in consumer-level IOS Apple Watch with an automatically connected
application on iPhone. PhysiQ uses a built-in accelerometer and gyroscope to collect sensory motion data and
analyze the data quantitatively. The maximum sampling rate that we choose is 50 Hz, because through our
analysis of a single exercise, we observed that the Fourier frequency is mostly below 10 Hz, and other papers
also support this observation [24]. Additionally, one of our metrics is stability, and such core motion of the body
should be captured more cautiously with a higher frequency rate. Thus, 50 Hz is what we decide to use. Lastly,
once the users have performed exercises, the result automatically synced from the watch to the smartphone
through Xcode WCSessions.

5.2 Training and Testing Dataset
Once the data is recorded, we segment the data according to our energy function. We used weights𝑊𝑥 ,𝑊𝑦 ,𝑊𝑧

for each accelerometer x, y, and z, and _ as an additional hyper-parameter. Next, we split the dataset and apply
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standard scales for all exercise segments; the scaler is an axis-wise scaler standardized on the current axes (x,
y, and z for both accelerometer and gyroscope sensory data). There are two splitting methods for evaluation
we employed. The first one is leave-one-person-out cross-validation (LOOCV). LOOCV is a cross-validation
approach that treats each subject as a “test” set. This type of k-fold cross validation has the k value as the number
of participants. LOOCV separates the models from seeing the validation/testing set. As a result, the model does
not see the distribution of validation subjects (participant), and we can analyze the generalizability of our model
on 34,000 training samples and about 3,000 validating and testing samples, of total 31 participants. In ROM and
stability, we have a total of 37000 data samples. In repetition, we perform a repetition comparison among 1, 2,
and 3 repetition, with a total of 280,000 data samples in shoulder abduction, 15,000 in external rotation, and 8,000
in forward flexion. For efficiency, we randomly choose 10% of the data in shoulder abduction for the overall
evaluation for 10 times. Secondly, we perform a standard 70% 10%, and 20% respectively on training, validation,
and testing splits as our overall evaluation. We randomly extract these splits in each subject in 70, 10, and 20
fashions in normal splits. By having both evaluations, we should know how our model works in real-world
scenarios and how well our model can perform.

5.3 Evaluation Metrics
We evaluate the performance using three measure methods in all experiments, i.e., R-squared, Mean Square Error
(MSE), and Mean Absolute Error (MAE). R-squared, the coefficient of determination, is how close the data are
fitted in the model or the percent of variation explained by the model. MSE measures the mean of the squares of
the errors, meaning it calculates the average squared difference between predicted and target values. Finally, MAE
measures how far predicted values are from observed values with their absolute difference. Equations shown
below:

𝑅2 = 1 −
∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )∑
𝑖 (𝑦𝑖 − 𝑦)

, (18)

𝑀𝑆𝐸 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (19)

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
, (20)

where 𝑛 is the number of dataset, 𝑦𝑖 is the predicted value, 𝑦𝑖 is the ground truth value, and 𝑦 is the mean value. 𝑦𝑖 ,
in our case, is the similarity score of two inputs of segments, and 𝑦𝑖 is our ground truth of similarity score based
on range of motion, stability, or repetition. To test our model with the baselines, we evaluate the experiments
on our local machine with a CPU of AMD Ryzen 9 5950X with a 16-Core processor (3.40 GHz), RAMs of 64 GB
(3200 MHz), and a GPU of Nvidia GeForce RTX 3090. The operating system is Windows 10 Pro. Additionally,
we envision to deploy our deep learning model into cloud server to support API call directly from our mobile
application.

5.4 Performance
5.4.1 Siamese Similarity. We explore different ways of quantitatively measuring our exercise metrics. There are
two necessary baseline models: RNN and CNN because RNN is known for arbitrary input with time-varied data,
and CNN learns well in spatial and temporal features [47]. Additionally, we choose SimCLR as third baseline
because its architecture enables useful representation learning in contrastive learning [9]. Thus, we provide and
twist the networks such as SimCLR [9], VGG, and RNN as our baselines to further understand our problem. In
SimCLR, the original paper proposed using the hidden features in the final layer of ResNet as a representation
to compare with a different image (or augmentation of the same images) to learn the underlying knowledge
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Fig. 8. This figure demonstrates that our framework, PhysiQ, outperforms many other architectures by capturing the
spatiotemporal information. As shown above, the red line represents our framework, PhysiQ with R-Squared result on
y-axis. Noted, the higher the R-Squared, the better the result as it explains how fitted our model is given the unseen data.
Moreover, interestingly, as shown in green line, vanilla RNN captures the temporal information very well but it has problems
of generalizability as in subject ID 1 while some of subjects the RNN model can predict very well.

of images with a contrastive loss. However, in our problem, we return a label with a value between 0 and 1.
We simplify the output procedure in SimCLR by having a Cosine Similarity as the final layer to compare the
two images (in our case, two segments of signals) and add a Sigmoid activation function to return such a result.
Additionally, since SimCLR utilizes ResNet in image comparison, we use their structure with a 1-D convolutional
layer instead of 2-D to perform an equivariant operation as well as to max pooling procedure. Moreover, VGG is
applied with similar 1-D convolution and 1-D max pooling to work with signals. Lastly, we also used a vanilla
RNN as our baseline. We use the outputs of the last sliding window as hidden representation and feed into a
similar output procedure as described earlier in SimCLR.

There is a potential drawback between half arm span and half-half arm span exercises. Because of the limited
external rotation motion, the model might have a harder time distinguishing all three metrics. But overall, our
model in all three exercises outperforms the baseline extensively in the metrics of range of motion, stability, and
repetition, as shown in Table 2, Table 3, Table 4. Moreover, because external rotation does not have as many
waypoints of motion as forward flexion (external rotation only has three, but forward flexion has five), its results
are not as good as shoulder abduction and forward flexion in stability. Additionally, RNN and SimCLR can have
a related good performance throughout the metrics but have difficulties with higher accuracy because of the
low complexity of the models. Similarly, in Figure 8, the baselines have inconsistent performance throughout
subjects, but PhysiQ outperforms them and consistently results well.

5.4.2 Classification. Next, we evaluate the PhysiQ’s classification component on the quality of activity, i.e., how
accurate can our model predict on ROMs. Thus, our baselines for the models are some of the best classification
models that modern machine learning and deep learning can achieve: CNN with Multi-Layer Perceptrons (MLP),
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Table 2. The overall evaluation on exercise shoulder abduction similarity comparison of range of motion, stability, and
repetition.

ROM Stability Repetition
PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG

MSE 0.00217 0.0153 0.0138 0.0442 0.00454 0.0143 0.0149 0.0561 0.00716 0.0145 0.0180 0.106
MAE 0.0310 0.0927 0.0914 0.175 0.0514 0.0930 0.0966 0.184 0.0690 0.0941 0.102 0.272

R-Square 0.949 0.634 0.676 -0.0341 0.791 0.342 0.314 -0.0645 0.869 0.736 0.668 -0.931

Table 3. The overall evaluation on exercise external rotation similarity comparison of range of motion, stability, and repetition.

ROM Stability Repetition
PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG

MSE 0.0117 0.0174 0.0129 0.0192 0.00166 0.0121 0.00220 0.00291 0.0105 0.0277 0.0305 0.119
MAE 0.0882 0.0990 0.0937 0.122 0.0250 0.0537 0.0309 0.0339 0.0749 0.134 0.140 0.285

R-Square 0.757 -0.0404 0.226 0.0184 0.423 -3.412 0.217 -0.0236 0.805 0.488 0.437 -1.298

Table 4. The overall evaluation on exercise forward flexion similarity comparison of range of motion, stability, and repetition

ROM Stability Repetition
PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG PhysiQ SimCLR RNN VGG

MSE 0.00215 0.00963 0.00988 0.0454 0.00602 0.0176 0.0155 0.0545 0.00276 0.0121 0.0121 0.0597
MAE 0.0366 0.0771 0.0673 0.179 0.0594 0.103 0.0948 0.190 0.0411 0.0888 0.0888 0.200

R-Square 0.950 0.775 0.772 -0.0515 0.883 0.657 0.700 -0.0450 0.9513 0.785 0.785 -0.0472

LSTM with MLP, and Logistic Regression (Linear). Because classification and similarity comparison are two
different problems, we target our problem using a different baseline but similar structure overall. CNN with MLP
utilizes the 1-D Convolutional Neural Network to capture spatial knowledge and use the hidden representation
to go through an MLP network to classify ROMs and stability. Similarly, LSTM with MLP has a similar approach,
except a sliding windows segmentation is used to create a temporal representation, which feeds into the fully
connected layer as MLP. Lastly, Logistic Regression is simply a fully connected model that considers all the points
(dimensional flattening) in the signal and predicts the labels.

As a result, we provide confusion matrices for all baselines and our model for classification of range of motion.
As shown in Figure 10a, 11a, and 12a, compared against the other 3 baselines, our model demonstrates the best
performance overall with a minimal inaccuracy on higher degree range of motion exercises. The difficulties in
differentiating between 30 and 60 degrees happen because of limited supervision and little self-reflection (such as
a mirror), and all subjects might not perform homogeneously in the exercises. As a result, this might leads to
inconsistency in the model to understand the difference between 30 degrees and 60 degrees ROM.

5.5 Parameters Evaluation
5.5.1 Sliding Windows. To evaluate the accuracy of our proper performance, we use different sliding window
segmentation of samples to test our model results. We test the performance on leave-one-subject-out cross-
validation (LOOCV). By having sliding windows that are 50, 100, and 150. The model decreased its performance
when the sliding windows increased while keeping the same step size. Increasing the sliding window size decrease
the number of time, or redundancy, for the model to see. Having smaller sliding windows helps the model to
understand the quality of exercises. At the same time, as we increase the step size (the size of overlapping), the
model also performs better but sees a drop in the testing dataset. An extensive redundancy overfits the training
distribution and does not generalize it well. As a result, we choose a sliding window of 50 with a step size of 15
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Fig. 9. This figure shows the accuracy of our model with output of classification of range of motion. As showed in this figure,
our PhysiQ (shown in red) performs mostly better than the other models in this diagrams with a percentage accuracy on
y-axis.

(a) PhysiQ (b) Logistic regression (c) CNN (d) RNN

Fig. 10. This is the confusion matrices for classification of range of motion in shoulder abduction with PhysiQ and baselines.
Shoulder abduction has a class of 5 from 30, 60, 90, 120, and 150, which is labeled from 0 to 4

for training, validating, and testing, which alike to our data collection rate of 50 Hz. Having some redundancy
helps the model to generalize the relationship between sliding windows.

5.5.2 Repetition Size. In repetition size, we have a different size in similarity comparison. We have each ID
number of segmented exercises for each subject. Adjacent ID number represents that they can be concatenated
together to output different. We use the same number of repetition sizes in training and testing. The model has a
slight difference in accuracy (3 - 5 percent) in bigger repetitions as length increases. However, this is also affected
by the hyperparameters that we choose. Without changing the step size and window size, the model can still
perform well because our model generalizes very well. Moreover, we also see a performance increase when
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(a) PhysiQ (b) Logistic regression (c) CNN (d) RNN

Fig. 11. This is the confusion matrices for classification of range of motion in external rotation with PhysiQ and baselines.
The external rotation has a class of 3 from 45, 90, and 150, which is labeled from 0 to 2

(a) PhysiQ (b) Logistic regression (c) CNN (d) RNN

Fig. 12. This is the confusion matrices for classification of range of motion in forward flexion with PhysiQ and baselines.
Forward flexion has a class of 5 from 30, 60, 90, 120, and 150, which is labeled from 0 to 4

adding dropout regularization deep LSTM network. As a result, the performance of four repetitions becomes
0.921 in the R-Squared correlation.

5.5.3 Padding. We also evaluate the effect of front padding and back padding. We hypothesize that there should
be no difference between front and back padding. However, when the padding is at the end of the temporal
sequence, the model does not learn, resulting in an average R-Squared score of 0. Moreover, the results remain
unchanged throughout the epochs. This non-learning behavior happens possibly due to the fact that many of the
segments are varied significantly. In that cases, many of the windows remain zero and do not help the model to
learn. At the same time, as we attempt the model without padding or minimize the amount of padding, we are
facing the issue that the temporal model could cheat the result because there is a correlation between higher
range of motion exercises and the length of the data. In contrast, lower ROM exercises can have a shorter overall
length. This relation could result in an accumulating effect of shortcuts for the deep learning model to learn and
cheat. So using constant front padding for all one repetition exercises is consistent and performs similarly in a
different number of repetitions.
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5.6 Ablation Study
5.6.1 Removal of Hidden Representations. After removing the temporal representation, LSTM encoder, part of
PhysiQ, the model still performs relatively well with an MSE 0.007168, MAE 0.0665, and R-Squared 0.8346 with
256 hidden features. At the same time, we did the same procedure for spatial representation. After removing
the CNN encoder from PhysiQ, the model performs relatively well with an MSE 0.00873, MAE 0.063, and 0.8208
in R-Squared with one hidden temporal layer and no dropout regularization. Interestingly, in the usages of
both spatial and temporal models, our model can achieve 0.92 R-Squared while removing either of them drops
significantly by around 10 percent. The decrease happened due to the reasoning that the signal data contain both
spatial and temporal information, and a single model can only capture part of the information with the help of an
attention mechanism.

5.6.2 Dropout. Testing the dropout is also essential to see how the model is generalized. This dropout is applied
in every layer, including the spatial encoder (CNN) and temporal encoder (LSTM). We used LOOCV to compare
our results with 0%, 20%, and 50% dropout rates to see if the difference is significant. We test our model with
hidden features of 256 for temporal and spatial encoding, two LSTM layers, 16 heads of attention, and a batch
size of 1024. The model should not have a significant difference between 20% and 50% but possibly a slight
performance boost in 20% or 50% compared to 0%. Our model is meant to generalize well across participants
and should not overfit the training distribution; the average result of 0 percent dropout across the participants
is 89.66%. The average result with 20 percent dropout is 89.73%. The average result with 50 percent dropout is
87.87%. Interestingly, the 20% dropout rate generates a slightly better results than 50%. This is because 20% has
already created its maximal regularization for the model, and increasing the dropout rate does not benefit from
regularization. On the other hand, a much higher dropout rate could result in a higher variance in the model,
resulted degradation in performance. Having only a 20% dropout rate creating the maximum of regularization
makes our model more convincing in terms of generalizability.

5.6.3 Attention. We test the importance of attention in our model. Attention is applied to selectively focus on
more critical aspects of the input sequence. In our model, attention is a final layer to measure the relationship
between each hidden state. With that in mind, we remove the attention layer to compare results in the metrics of
the range of motion in shoulder abduction, external rotation, and forward flexion. Without the attention layer, the
performance of LOOCV in shoulder abduction drops to a 0.892 R-squared correlation from 0.908. On exercise
external rotation, the performance of LOOCV drops to a 0.560 R-squared correlation from 0.675. Meanwhile, the
performance of LOOCV on forward flexion has an insignificant increase from 0.815 to 0.830. In summary, if the
motion data is distinguishable and representative, the attention layer does not have a huge impact. However,
when exercise has a limited motion, such as half-half arm span exercise external rotation, the attention layer is
more impactful.

6 A SURVEY ON USER EXPERIENCE
To investigate PhysiQ’s application in practice, we surveyed the participants who used our system for data
collection. Users wear an Apple Watch with a connected iPhone with our PhysiQ apps installed during data
collection. In the beginning, users have the exercise instruction on the phone to start. PhysiQ on the phone
visualizes the signal to see the repetition quality and feedback to the users (as shown in Fig. 1).

After collecting the data, we distribute a questionnaire to all users. The questionnaire asks six questions on
different scales. We designed the survey questions for three purposes. First, we get users’ feedback on our current
design (Q1). Secondly, we explore users’ preferences in alternative platforms and recommendations to improve
our current design (Q2 and Q3). Last, we gather users’ demographic information (presented in Section 4) and
ask behavioral questions (Q4-Q6). We study the correlation between users’ behaviors and the performance of
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our algorithms in measuring their activities. We attach the questions and summary of results below because we
believe our findings are valuable for our future work and the research community.

• Q1: How do you like the current feedback and recommendation system?
– scale of 1 to 5, with 1 being the lowest, and 5 being the highest

• Q2: If we have a different platform, what platform will you like to have recommendation system
of the exercises on?
– Smartwatch
– Smartphone
– Smartglasses such as VR, AR glass

• Q3: During what period of the exercise do you like such a feedback? For example, for today’s
exercise session, you have 5 different exercises to perform and for each exercise you have 10
repetitions of 5 sets?
– After a set of exercise (during this particular exercise, after 10 repetition)
– After the particular exercise of 5 sets
– After the entire exercise session (after 5 exercises)

• Q4: During the time of collecting your exercise data, do you drink coffee or any caffeinated
drinks regularly? If so, how often?
– Every day
– A few times a week
– About once a week
– A few times a month
– Once a month
– Less than once a month

• Q5: During the time of collecting your exercise data, how many hours do you sleep?
– Time in hour

• Q6: This question is regarding yourmedical history and you do not need to specify themedication.
At the time of collecting your exercise data, do you know and take any medication at the time
that would affect your ability to perform exercise or activity?
– Yes or no

Out of 31 participants, we have 27 participants who complete the follow-up survey. Overall, we have an average
of 4.26 rating on how much the users like our system. Interestingly, we have 48.1% of the users who want to
have a recommendation on a smartwatch, 51.9% of the users on a smartphone, and no one wants to use smart
glass to get recommendation feedback. Additionally, 59.3% of our users want to have their feedback after a set of
exercises, 22.2% after the particular exercises, and 14.8% after an entire session. Lastly, one participant suggests
they should be able to see the feedback anytime they want.
Moreover, we have 18.5%, 33.3%, 14.8%, 18.5%, 3.7%, and 11.1%, respectively, on the frequency of coffee

consumption based on the answer order above. At the same time, on average, our participants sleep 7.63 hours
with a minimum of 6 and a maximum of 9. Lastly, we only have 1 participant possibly on medication that affected
their performance overall, but we do not find that medication was affecting the performance of our model testing
on this participants’ exercises.
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7 DISCUSSION

7.1 Applications
7.1.1 Physical Therapy Home Assessment. . This application is intended to work for patients and people injured,
postoperative, or mentally traumatized. While performing at-home exercises, our application can provide real-
time feedback and assess the quality of the exercises to provide better interaction and supervision while clinics are
not accessible. At the same time, we believe our model is capable of analyzing and predicting people who might
suffer from a different illness or potential injuries. One example is that people with heavy usage of handcrafting
might suffer from carpal tunnel syndrome, which is caused by pressure on the median nerve.

7.1.2 Daily Exercises Assessment. . This application can also support working with people who enjoy exercise.
People can benefit from it by closely assessing how they perform specific repetitions of exercises. Moreover, this
application could also apply to people who are playing sports. We envision that our model can eventually support
people who play sports like tennis to predict a player’s direction, speed, or posture.

7.2 Assumption and Limitation
This paper discusses the potential of using a smartwatch to support users assess their exercises with a quantitative
measure of the quality. However, there are a few assumptions made to support this application. First of all, we
assume that the users’ posture should have some level of decency. For example, suppose users perform the
exercise of shoulder abduction while bending their neck or wiggling around as not in a straight form. In that case,
the application likely can still give a good score on the exercises simply because the users might still perform the
exercise correctly. Because the smartwatch cannot capture all the movement within the body, we do not have
the luxury of analyzing all the posture. Secondly, we assume that the primary segmentation is performed upon
accelerometer data, and its energy is only extracted from the accelerometer. Thirdly, we assume there is 5 level
of quality of exercises in range of motion in shoulder abduction. These are our metrics to digitalize from body
movement to computational numbers. The five levels can vary based on different professionals’ metrics, and our
goal is to standardize a metric in our model that can measure and understand.

We notice that the energy plot does not have a clear pattern in some exercises for some subjects. Such limitation
is due to our little knowledge regarding the data collection. Applying our energy plot when collecting data from
the users could be more rigorous and use it as a checkpoint to verify if the subjects have correctly performed the
exercises. In the future work, we will improve our framework to better handle above assumptions and limitations.

8 SUMMARY
We develop an innovative system, PhysiQ, to quantitatively digitalize the quality of exercises through new
metrics on a commodity smartwatch. We scrutinize and verify that different metrics and exercises have unique
characteristics that can be recognized and understood by our deep learning model. By developing such a model
based on Siamese Neural Network with additional spatiotemporal representation encoding, our model can achieve
95 percent R-square correlation and 90 percent accuracy in classification. Moreover, a comprehensive evaluation
and user studies are performed to show the effects on our metrics in range of motion, stability, and repetition. The
end goal is to improve the prediction and assessment of people who needs therapy to improve their quality of life.
In addition, we envision that current technologies and relevant professions can be benefited from it by expanding
usability, generalizability, and model learnability. By combining deep learning and the physical therapy method,
we believe that our framework is the tool to lead people to improve their quality of life.
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