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CRYSTAL ENERGY OPTIMIZATION ALGORITHM
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Nature has always been a muse for those who dream in art or science. As it goes, optimization algorithms
inspired by nature have been widely used to solve various scientific and engineering problems because of their
intelligence and simplicity. As a novel nature-inspired algorithm, the crystal energy optimizer (CEO) is proposed
in this article. The proposed CEO is motivated by the following general observation on lake freezing in nature:
the dynamics of crystals have possession of parallelism, openness, local interactivity, and self-organization. It
stimulates us to extend a crystal dynamic model in physics to a generalized crystal energy optimizer for traveling
salesman problems, so as to exploit the advantages of crystal dynamic system and to realize the aforementioned
purposes. The proposed CEO has these advantages: (1) it has the ability to perform large-scale distributed parallel
optimization; (2) it can converge and avoid local optimum; and (3) it is flexible and easy to adapt to a wide range
of optimization problems.
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1. INTRODUCTION

1.1. Background

When the Nobel Prize in Chemistry was awarded for research inspired by jellyfish,
a comment from Nature goes, “The natural world serves scientists as a constant signpost
towards phenomena yet unknown. The natural world continues to hint at solutions to modern
technological dilemmas, and that when it comes to simple and effective solutions, nature is
usually well ahead of man” (Anonymous 2008).

Nature is enlightening and encouraging human beings to seek inspiration from it. The
tradition of biologically inspired computing extends back more than half a century to the
original musings of Alan Turing about artificial intelligence and John von Neumann’s (1955)
early work on self-replicating cellular automata in the 1940s. Since then, computer scien-
tists have frequently turned to biological processes for inspiration. In Jeffrey O. Kephart’s
(2011) Learning from Nature, he agrees that “Indeed, the influence of biological analo-
gies is attested by sub-fields of computer science, such as artificial neural networks, genetic
algorithms, and evolutionary computation.”

Methods mimicking and modifying nature-inspired models have been proposed in
recent years. As a result, plenty of unsolved and time-consuming problems in real life have
been solved by them effectively. However, existing algorithms could not always satisfy the
increasingly overwhelming requirement of super large and complicated instances in the
real world. The incremental demand of intelligent and efficient algorithms attracts more
researches to exploit computational intelligence in nature.

By this circumstance, obeying the rules of being “simple and effective,” a novel nature-
inspired algorithm, the crystal energy optimizer (CEO), is proposed in this article. Just
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like the common “jellyfish” in the sea, lake freezing in winter is one of the normal but
enlightening phenomena in nature. As we all may notice, with the temperature falling in
winter, the lake begins to precipitate little ice crystals, which will link into bigger crystal
sheets. At last, the whole surface of the lake freezes like a mirror, as shown in Figure 1.
From water to ice, behaviors of crystals in the lake are driven by the energy transfer, which
is caused by the change of temperature. Building on this process, models concerning energy
transfer among crystals are established as the fundamental of the proposed CEO, which
is expected to be a parallel algorithm with high intelligence and efficiency, especially for
large-scale problems.

1.2. Related Work

Laws of nature keep all creatures born, growing, and living in their environment
harmoniously. Human beings draw inspiration from them to design strategies and propose
approaches. Most of the strategies and approaches drawn from natural intelligence can
be categorized into three classes. First, evolutionary algorithms such as genetic algorithm
(Forrest 1993) are inspired by the Darwinian theory. Second, behavior-related and swarm
approaches (Mehrjoo, Sarrafzadeh, and Mehrjoo 2015), such as the ant colony optimizer
(ACO) (Bonabeau, Dorigo, and Theraulaz 2000), particle swarm optimizer (PSO) Zhan
et al. (2011), and group search optimizer He, Wu, and Saunders (2009), are inspired by the
social intelligence of animals. Third, phenomenon-mimicked models, for example, the root
growth algorithm Zhang, Zhu, and Chen (2014), hurricane-based optimization algorithm
(Rbouh and Imrani 2014), and artificial plant optimization algorithm Cui et al. (2012), are
inspired by nature rules. Most well-known and well-developed intelligent algorithms exist-
ing belong to the first two categories. Although there are plenty of enlightening phenomena
in nature, only a few related approaches are proposed. The third category remains to be
exploited. For example, the freezing phenomenon of a lake is a promising instance with
both mechanisms of swarm intelligence and phenomenal mimicry. From the perspective
of the lake, all the crystals inside will precipitate and grow under the influence of energy
transfer (Maybank and Barthakur 1967). From the perspective of crystal individuals, they
perform their behaviors independently. Thus, the inherent merits of both swarm intelligence
and natural rules could be represented by the crystal models at the same time.

Although outstanding results are reached by the intelligent methods discussed earlier, a
local optimum is inevitable sometimes for the inherent deficiency of mathematical models

FIGURE 1. The frozen lake.
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(Lim and Zhu 2013). This is mainly because some formulas and parameters in them are
obtained through a series of experiments without supporting theoretical evidence. How-
ever, physics-inspired approaches can avoid this problem. Models built on the theories in
physics, such as Newtonian mechanics and principle of conservation of energy, usually
have strong support, as well as more stable and convincing results. For example, the simu-
lated annealing algorithm (Kirkpatrick, Gelatt, and Vecchi 1983) is built on the fundamental
of thermodynamics. It has a superior ability to avoid local optima. Different from other
nature-inspired algorithms, the proposed CEO algorithm is influenced by the energy transfer
functions, which obey the theorem of dynamics. Furthermore, the mathematical formulas
are supported by the dynamic functions of crystallization in nature.

Another problem of most of the existing intelligent algorithms is their frequent inter-
actions between individuals or agents. Two consequences could be brought. First, if one
individual or agent falls into a local optimum, it is easy for others to be stuck in local as
well (Ishteva et al. 2011). Second, these strong interactions require the algorithms to be exe-
cuted step by step (Ling et al. 2011; Sun et al. 2013). Therefore, much computer time will
be wasted, especially when the scale of a problem is large. However, as we have discussed
earlier, the crystals in the proposed CEO are independent. Few interactions among them not
only reduce the possibility of local optimum but also make the proposed CEO an outstand-
ing property of parallelism. Another effective way to keep the proposed CEO from the local
optimum is the wind-blow model, where crystals could be dropped off and relinked at a
better position.

The intelligent algorithms have been applied to solve numbers of complex problems
(Liu and Zhou 2014), such as the series of continuous benchmark functions (He et al.
2009), wireless sensor networks (He et al. 2012; Sadi and Ergen 2013), Altman informa-
tion security (Altman et al. 2013; Tang et al. 2013), and so on (Lim and Mat Isa 2014).
The performance on these applications is promising. However, most of these algorithms are
designed particularly for one or two types of problems; thus, their scope of application is
limited. For example, notwithstanding the superior results of PSO in continuous functions
(Schmitt and Wanka 2015), its performance on discrete problems is not desirable even with
the help of Sigmoid functions and 0–1 models. Also, the performance of the group search
optimizer in dynamic problems (Teimourzadeh and Zare 2014) is not competitive with static
functions. Not particularly designed for a certain type of problem, the proposed CEO has
a much broader application than the other intelligent algorithms for three reasons. First,
the CEO can be used to solve either continuous or discrete problems. Second, the status
of crystals is only affected by the energy transfer, setting the crystals free from the con-
straints of the geographic position. Therefore, the CEO could be applied in both static and
dynamic fields. Third, the parallelism of CEO makes it capable of solving large-scale prob-
lems in a relatively short time, while many other similar algorithms even could not find an
acceptable solution.

1.3. Motivation

The proposed CEO is motivated by the following general observation on lake freezing in
nature: the dynamics of crystals have possession of parallelism, openness, local interactivity,
and self-organization. It stimulates us to extend a crystal dynamic model in physics to a
generalized CEO for traveling salesman problems (TSPs), so as to exploit the advantages of
crystal dynamic system and to realize the aforementioned purposes. The advantages of the
proposed CEO are highlighted as follows.

(1) Building on the intelligent and strongly supported mathematical model, the CEO
algorithm is expected to have a promising optimization performance. Because the
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models of CEO have the characteristics of three nature-inspired models as we have dis-
cussed earlier, they are supposed to perform their combination merits. First, from the
perspective of the phenomena mimicry model, the CEO models follow the intelligent
rules of being “simple and effective.” Moreover, CEO is a branch of swarm intelli-
gence, and thus, the decentralized and self-organized system could give it the ability to
obtain independence and global optimization. At last, the accuracy and effectiveness of
mathematical models could be guaranteed by the physics-inspired model.

(2) Local optima are supposed to be prevented validly by the proposed CEO according
to the following protective measures. Because crystals in the CEO precipitate and
grow individually by their energy transfer functions, there are few interactions exist-
ing among them. Without “copying” or “following” behaviors, the probability of all
the agents falling into a local optimum declines. Even if some crystals are stuck in
the suboptimum, by the effect of wind blowing, their conditions could be changed by
the wind.

(3) By its inherent parallel structure, the CEO model admits a highly parallel algorith-
mic implementation and thus possesses the ability to deal with large-scale complex
problems. With few interactions, the energy of crystals in CEO could be calculated
separately on different computing cells. Freezing on parallel could reduce the com-
puter time, which is inversely proportional to the number of processors. Thus, the high
efficiency of CEO could be reached, making CEO suitable for large-scale problems.

(4) The application of CEO could have a broader perspective. To start with, instead of
designing for some certain type of problems, the procedure of CEO is relatively simple
and suitable for both continuous and discrete problems. In addition, the energy of CEO
is mainly affected by the environment and updated in each iteration, making it less
relevant with the position of the crystal. Therefore, it is capable of solving both static
and dynamic problems. In the end, the ability of solving large-scale problems, as we
have analyzed, also extends its scale of application to a profound field, where only a few
algorithms could reach.

1.4. Contribution

The main contribution of this article is as follows.

(1) Inspired by the nature phenomenon of freezing and crystal behaviors, the precipitation–
growth model and the wind-blow model are built physically. Furthermore, according
to the theory of dynamics and functions of energy transfer, mathematical models are
established. The precipitation–growth model can find the suboptimal solution in a very
short time. Then, the wind-blow model will lead it to the optimum.

(2) Based on the aforementioned models, the CEO is proposed. It is a parallel algorithm
with high efficiency, especially for large-scale problems.

(3) The effectiveness and convergence of CEO are analyzed theoretically. Through the the-
ory of Lyapunov stability and the convergence theorem, the convergence of energy of
CEO is proved. Therefore, the applicability not only for the TSP problem but also for
all the optimization problems is verified.

(4) The effectiveness, efficiency, and parallelism of the proposed approach are tested by a
number of simulations. First, by comparing the quality of solution and computer time
before and after wind blowing, we have two conclusions. On the one hand, an accept-
able suboptimal solution for some applications can be obtained by the CEO in a very
short time. On the other hand, the wind-blowing process can prevent solution from the
local optimum effectively. Second, by comparing the quality of the solution of the CEO
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with that of other algorithms, the superior performance of the CEO is illustrated. Third,
the high efficiency and less time consumed for the large-scale instances of the CEO
illustrate its effectiveness on large-scale problems. Last, its property of parallelism is
verified by parallel experiments.

1.5. Organization

The rest of this article is organized as follows. Crystal energy models are built in
Section 2 mathematically. The parallel CEO is proposed based on crystal energy models in
Section 3, and its solution for TSP is introduced in Section 4. In addition, the theoretical
foundation and convergence analysis of our proposed algorithm are discussed in Section 5.
Furthermore, experimental results of CEO are analyzed and compared in Section 6. In
Section 7, we draw the conclusions and discuss about future works.

2. CRYSTAL ENERGY OPTIMIZER

2.1. Description for Freezing Behaviors of Crystal

There is a descent of temperature in winter. When it falls down below freezing point,
lakes in the north will begin to freeze. The freezing phenomenon of a lake is a gradual
transition of water from liquid to solid, which is caused by the transfer of its energy. Equation
(1) from Murray, Knopf, and Bertram (2005) indicates the relationship between temperature
and energy, where �E.Q/ is the variation of energy, m is the quality of entity, C is the
specific heat capacity, and �T is the variation of temperature. The main process of freezing
is as follows: (a) the temperature descent in the environment makes the lake release energy
to the environment; (b) according to equation (1), the temperature of the lake falls down;
and (c) when the temperature of the lake reaches the freezing point (temperature threshold
of freezing), crystals begin to precipitate and link together.

�T D �E.Q/=mC: (1)

The transfer of energy during this process is so complicated that a number of factors
should be taken into consideration, such as the temperature of the lake and environment,
properties of the lake, composition of the atmosphere, wind and pressure around them, and
inter-transfer energy between them.

However, we simplify the freezing behaviors of crystals by proposing the following
assumptions.

Hypothesis 1 (Process). Releasing energy to the atmosphere, crystals in the lake begin to
precipitate when their energy arrives at the threshold. Then, precipitated ones will join
together through crystal links. By which means, a crystal shell is formed. With more and
more crystals precipitating, the crystal shell grows until the whole lake is frozen.

Hypothesis 2 (Shell). It is easier for the crystal near the shore of the lake to precipitate,
because the water there is shallow and far away from the center of the lake. Therefore, there
is a crystal shell formed on the edge of the lake at the beginning of the freezing. The order
of freezing should be from the edge to the center gradually.

Hypothesis 3 (Wind). Wind blowing over the lake has two major functions, taking away the
energy and breaking up the crystal links on the lake.
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Hypothesis 4 (Energy). During the process of freezing, there are three major forms of
energy affecting the energy of lake. The first one is the energy of the center of the lake, where
the temperature is highest. It can be regarded as the source of heat for the lake. Therefore,
when the crystals lose energy, they will recharge from the center. The second effect comes
from the precipitated crystals. They will try their best to “attract” crystals to join them by
absorbing their energy and forming the crystal links. The last major influence is the wind,
which has been discussed in Hypothesis 3.

Inspired by the phenomenon of freezing of a lake (assumptions made earlier), crys-
tal models are built based on the freezing behaviors of crystals. The flow charts of the
models of CEO are shown in Figure 2, where Figure 2(a) is the overall flow of the CEO
including several submodels. Meanwhile, Figure 2(b and c) shows the specific processes
of precipitation–growth and wind-blow, respectively. In addition, mathematical models are
further developed elaborately in the following subsections.

2.2. Formation

According to Hypotheses 1 and 2, crystals on the edge of the lake will precipitate at the
beginning of the formation. It looks like a convex hull when all the crystals by the shore
precipitate and link together. Therefore, the initial crystal shell is formed.

Considering the different statues of crystals, sets are defined first to clarify their relation-
ships and transition. According to Definitions 1 and 2, a set involved in the freezing process
is defined as Crystal � ", which consists of two subsets CrystalW � " and CrystalI � ". The
later one is the precipitated ice crystal, and the former one is the water crystal. Another
important set is Shell � ", which is also a subset of Crystal � ", consisting of the crystals on
the edge.

(a) Overall Flowchart (b) Precipitation-Growth (c) Wind-Blow

FIGURE 2. The flowchart of crystal energy optimizer models.
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Definition 1. Supposing that Crystal � " D ¹c1; : : : ; ciº represents all the crystals
in the lake, including the frozen and unfrozen parts, and ordered collection
CrystalI � " D ¹c1; : : : ; ciº represents the crystal precipitated, we have

Crystal � " D CrystalI � "C CrystalW � ": (2)

Definition 2. Supposing that Shell � " D ¹s1; : : : ; smº represents the crystal shell; thus,

Shell � " � CrystalI � ": (3)

Definition 3. The two-dimensional matrix R D

"
r11 � � � r1n
� � � rij � � �
rn1 � � � rnn

#
represents the crystal links,

and rij D ¹0; 1º represents the link between crystals ci and cj . If rij D 1, there is a link
between ci and cj . Otherwise, if rij D 0, there is no link between ci and cj .

The two-dimensional matrix D D

"
d11 � � � d1n
� � � dij � � �
dn1 � � � dnn

#
represents the distance between

crystals, where dij is the distance between crystal ci and cj .

The total lengthL of links is donated byL D R ıD, where “ı” means
nP
iD1

nP
jD1

rij � dij ,

rij 2 R; dij 2 D, i.e.,

L D R ıD D

nX
iD1

nX
jD1

rij � dij : (4)

2.3. Precipitation–Growth

After the formation of the crystal shell, other crystals keep precipitating and growing
because of the decrease of energy. According to Hypothesis 4, the influence on energy of
crystals comes from three roles, the lake center, precipitated crystals, and wind. As shown
in Figure 3, for any crystal ci , it absorbs energy from the center and releases energy to the
ice crystal. At the same time, the energy of all the crystals is taken away by the wind. The
energy of crystals is defined in Definitions 4–8.

Definition 4. For any crystal ci , Ei0 is its initial energy. At time t , if Qi .t/ is the energy
influence from the environment, the total energy of ci at time t is

Ei .t/ D Ei0 CQi .t/: (5)

Supposing that there are n crystals in the lake, the total energy of the lake at time t is

E.t/ D

nX
iD0

Ei .t/ D

nX
iD0

.Ei0 CQi .t//: (6)

Particularly, the influence from the environmentQi .t/ consists of three parts as defined
in Definition 5.
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FIGURE 3. The energy transfer on a lake.

Definition 5. Supposing that Pi .t/, Si .t/, and Wi .t/ are the effects from the center energy
of the lake, frozen crystal energy, and wind, respectively, their weighted sum gives the total
influence as

Qi .t/ D �1Pi .t/C �2Si .t/C �3Wi .t/ (7)

where �1, �2, and �3 are the decision factors with two functions. On the one hand,
their signs indicate the direction of influence. For instance, �1 is positive, meaning that the
crystal absorbs energy from the center. Meanwhile, �2 and �3 are negative, indicating that
both ice crystals and wind take away their energy. On the other hand, the values of these
decision factors vary in different stages of freezing. The reason is that different factors
dominate different processes of freezing, which will help to speed up the convergence of
the algorithm.

During the process of precipitation, the energy of crystals is taken away by the wind and
resupplied by the lake center. By this means, the center and wind are the dominant factors
of freezing. Thus, we have �1 > �2 and �3 > �2.

After precipitating, crystals link together because of the influence from the ice crystals.
By this circumstance, ice crystals are the dominant factors. Therefore, the relationship turns
to �2 > �1 and �3 > �1.

Definition 6. Supposing that the location of crystal ci is Li ; then the distance dij between
crystals ci and cj is given by

dij D jj.Li � Lj /jj: (8)

Therefore, the distance from crystal ci to the center di0 is given by

di0 D jj.Li � L0/jj: (9)

According to McKay et al. (1985), the balance of upward conduction of heat at a given
depth in the ice cover gives

Z D
k.T0 � Ts/ � S0.1 � a/.1 � r/h

v�l
:

In this equation, the meanings of parameters are as follows. Z is the equilibrium thick-
ness of the ice cover; k is the thermal conductivity of ice; T0 is the temperature of the
ice–water interface; TS is the yearly averaged temperature of the surface; S0 is the solar
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radiation incident on the lake surface, and the exponential term gives attenuation with depth
into the ice with an extinction path length of h; a is the albedo of the lake; r is the fraction of
the lake; the heat flow caused by the latent heat release at the ice–water interface is defined
as L D v�l , where v is the rate of formation of new ice averaged over the entire year, � is
the density of the ice, and l is the latent heat of water.

By analyzing this equation and combining it with the assumptions we have made in our
models, it is simplified and transformed as follows.

First, according to equation (1), the relationship between energy and temperature, the
variation of temperature �T , can be expressed as

�T D T0 � Ts D
�E

mC
:

Second, CEO models are built on the phenomena of freezing of the surface of the
lake. Therefore, the depth of the lake is not taken into consideration. Thus, we assume the
thickness of frozen lake as Z D 1 and the extinction depth as h D 0. Then we have

1 D
k�E
mC

v�l
:

Thus, the changing of energy of ice on the lake caused by the heat of the lake is

�E D
v�mC

k
� l:

Third, for a given crystal ci , v; �;m;C , and k are constant parameters. To simplify the
expression, we have

˛ D
v�mC

k
:

However, the heat of the water is not the same for all the crystals. As we have assumed,
the source of heat from the lake is the center of the lake, so its energy effect is inversely
proportional to the distance from the crystal to the center:

l D
P

di0

where constant parameter P is the energy released by the center.
In sum, the influence on crystal ci from the center of lake at time t , Pi .t/, equals the

variation energy from the center heat to the crystal�E, which can be expressed as equation
(10) in Definition 7.

Definition 7. The energy crystal ci absorbed from the center of lake Pi .t/ at time t is
inversely proportional to its distance from the center:

Pi .t/ D
˛P

di0
D

˛P

jjLi � L0jj
(10)

where constant parameter P is the energy released by the center and ˛ is a scale factor.
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Krinner et al. (2004) show that the enhanced ice sheet growth in Eurasia is due to several
adjacent ice-dammed lakes in a large area. From a micro-perspective, we infer that crystals
that precipitated in a lake also have an influence on other crystals. This inference also agrees
with the theory of heat conduction (Strunk, Tracy, and Kleiber 1973), which indicates that
there are three equations for heat transfer in different conditions. For the heat transferred
between crystals, we have

dQ=dt D kA=d.T � T0/

where dQ=dt is the total rate of heat flow, k is the thermal conductivity, A is the heat
transfer area, d is the thickness over which a temperature gradient exists, and T � T0 is the
difference of temperature.

We also simplify and transform this equation according to our models and assumptions
as follows.

First of all, based on equation (1), the difference of temperature can be expressed as the
difference of energy, as

�E D mC.T � T0/:

Second, for any crystal ci , the values of the total rate of heat flow, the thermal
conductivity, and the heat transfer area are the same. Therefore, dQ=dt , k, and A are
constant.

Third, the thickness over which a temperature gradient exists d is different because the
distances between two crystals are different.

Therefore, the equation of energy transfer Sj i .t/ between two crystals ci and cj is
transformed into

�Eij D
kAmC

v
�
1

dij
:

ˇ � S is used to substitute the constant part, as

ˇ � S D
kAmC

v

where ˇ is a scale factor and S is the energy of the crystal source.
Thus, we have the energy function of ice crystals Ej i .t/ as

Eij .t/ D ˇS �
1

dij
:

In our CEO models, a crystal just precipitated ci will join between two ice crystals.
Therefore, two adjacent crystals that have the most effect on ci will break the existing link
and link with ci . This process is defined by equation (11) in Definition 8. Their effect is
defined by equation (12) in Definition 8.

Definition 8. Supposing that crystal ci only releases energy to the closest two adjacent ice
crystals, its released energy at time t , Si .t/, is

Si .t/ D max
j2Œ0;N �

ŒSj i .t/� (11)
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Sj i .t/ D Ej i .t/CE.jC1/i .t/ �Ej.jC1/.t/

D ˇS �

�
1

dij
C

1

di.jC1/
�

1

dj.jC1/

�
(12)

where Sj i .t/ is the influence by frozen crystal cj on its neighbor crystal cjC1.

2.4. Behaviors of the Wind

As maintained by Bell (2008), when the wind (air) blows over the surface of the water,
huge quantities of ice will be moved around by melting the ice sheets. It indicates two major
behaviors of wind (air flow) blowing over a lake:

� Taking away the energy of crystals
� Breaking up the existing links between crystals

The first behavior, as defined in Definition 9, is one of the main factors inducing
the precipitation and growth of crystals. It will keep taking away the energy of crystals
constantly.

Definition 9. For any crystal ci , the energy taken away by the wind at time t , Wi .t/, is
constant, which is defined by

Wi .t/ D C (13)

where C is constant.

The second behavior will break the existing links of crystals.
According to Maybank and Barthakur (1967), the ice crystals are more numerous, thin-

ner, and more fragile with the decrease of temperature. Crystals will shatter one after another
during the course of freezing. Then a crystal link will be allowed to resume growth and
produce the fragile dendritic filaments.

The growth rates dm=dt are defined as

dm

dt
� 4�C

�

f .T /

where C is a shape factor that assumes different values depending on the geometry of the
crystal, � is the supersaturation of the environment relative to ice, and f .T / is a function
of temperature only. Because C and � are the same for all the crystals, temperature is the
only factor affecting the crystal growth rate. It also can be expressed by energy according
to equation (1). When wind blows over the surface of the lake, energy will be taken away,
and the temperature will keep falling. With the temperature going down after all the crystal
precipitated, the crystal shell will begin to “shatter” and “resume” by the effect of the wind.
Therefore, the shatter-and-resume crystals are defined in Definition 10.

Definition 10. Assume thatK crystals are chosen to melt and re-precipitate randomly at one
time and repeat this process T times; thus, the set of shatter-and-resume crystals Cdrop is

Cdrop D

TX
jD1

C
j
drop

C
j
drop D ¹c1; : : : ; ci ; : : : ; cKº
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FIGURE 4. The wind-blow model.

where crystal ci is obtained by

8ci 2 Crystal � "

ci ˝ ciC1; ci ˝ ci�1 and ciC1 ˚ ci�1: (14)

In Definition 10, ˝ represents cutting off the link between crystals ci and ciC1, while
˚ represents rebuilding the connection. As shown in Figure 4, there are 10 crystals com-
pletely frozen. When wind blows, r54 and r51 are broken to release crystal c5. Furthermore,
with their energy reducing, it will rejoin the crystal shell again on the position that attracts
it most.

During the process of freezing, some crystals may precipitate earlier than other crystals
near them, by which circumstances it will link to the ice crystals that are relatively far.
It is not the optimal way of linking. Then the CEO may prematurely find a local optimal
solution. However, the break–reconnection process by the wind-blow model can change this
situation. When some links break up, these premature crystals may break from the crystal
shell and reconnect to a better position. Therefore, it can prevent the algorithm from falling
into the local optimum effectively.

Therefore, these crystals have a second chance to link to a better place by the wind-blow
model. The wind-blow model changes the connection structure of crystals and prevents the
algorithm from falling into the local optimum effectively.

3. THE PARALLEL CRYSTAL ENERGY ALGORITHM

Based on the models established in Section 2, the CEO algorithm is proposed in this
section. The process of calculation is introduced in Algorithm 1. The main flow of the CEO
can be described as follows:

Step 1: The crystal shell forms.
Step 2: Crystals with low energy precipitate and link to the crystal shell.
Step 3: After all the crystals are precipitated, K crystals break up links and drop off
randomly.
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Step 4: These crystals re-precipitate and link to the crystal shell as in step 2.
Step 5: Step 4 is repeated for T iterations, and final links (i.e., the solution) are obtained.

Algorithm 1 The parallel crystal energy algorithm
Require: Positions of crystals on the lake

Initial energy of crystals Ei0 and energy threshold ET
Scale factors ˛, ˇ, and 	
Decision factors �1, �2, and �3
Wind-blowing iteration number T and crystal number K

Ensure: The links among crystals and their energy
1 InitializeN crystals and parameters —Parallel
2 Form the crystal shell
3 While N > 0 do

Calculate the energy of crystals according to equations (5)–(13) —Parallel
If the energy of crystal ci reaches ET —Parallel

Crystal ci precipitates —Parallel
Calculate the influence from ice crystals on ci according to
equation (12) —Parallel
Crystal ci links to the crystal shell by forming two links —Parallel

End If
N - -

End While
4 While T > 0 do

Choose K crystals randomly and drop them out of the crystal shell as in
equation (14) —Parallel
Re-precipitate and relink crystals to the crystal shell as in step 3 —Parallel
T - -

End While
5 Output the final links

The CEO algorithm proposed in this article is a parallel algorithm. The parallel structure
of the CEO algorithm is shown in Figure 5, where Crystal � " represents the set of all the
crystals. As shown in Figure 5, computing cells are allocated according to the structure of
the CEO. This is the distribution-maximized condition, where each crystal corresponds to a
computing cellCi . After all the crystals of a computing cell finish precipitating and growing,
their computing cell is released. Compared with single computing, parallel computing of
the CEO algorithm not only increases the computing efficiency but also releases the excess
resources occupied by the algorithm to save space overhead.

It is profoundly efficient that each crystal is calculated in parallel in the CEO algorithm.
It provides us a flexible interface to calculate more complicated energy functions effectively.
The effectiveness of parallelism is more obvious in large-scale problems.

4. THE CEO FOR TSP

4.1. Description for TSP

The mathematical description for TSP is as follows. If the order of traversal for cities
(City D ¹city1; city2; : : : ; citynº) is S D ¹s1; s2; : : : ; snº, where si 2 V.i D 1; 2; : : : ; n/
and snC1 D s1, then the object is
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FIGURE 5. The parallel calculation structure of the crystal energy optimizer.

min
S2˝

nX
iD1

dst stC1 (15)

dij D

q
.´i � ´j /

2 C .yi � yj /
2 (16)

where 
 is the set of all the possible paths between n cities, dij is the path between cityi
and cityj , and xij represents the reachability between city cityi and cityj , i.e.,

xij D

²
0; dij D1

1; dij exist
: (17)

4.2. Solutions

In this subsection, we will explain the detailed steps of CEO solving the TSP by setting
a simple example with 10 cities. The cities in the TSP are represented by the crystals in the
CEO. The final links between crystals are the paths of optimal solution for TSP by the end
of iterations. Therefore, an ordered set of crystals at the end is the traverse order of cites.
The detailed elements of CEO corresponding to TSP are shown in Table 1. The flow of the
solution will be introduced step by step as follows. The data of the process are shown in
Table 2, and the solution process is in Figure 6. The energy has been highlighted when the
statue of crystal changes.

Example 1. A salesman is going to visit 10 cities with the least length of paths. The positions
of cities .x; y/ are shown in Table 2.
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TABLE 1. Solutions of Crystal Energy Optimizer (CEO) on the
Traveling Salesman Problem (TSP).

CEO TSP

Lake The area with all the cities
Crystal ci cityi to visit
Link between crystals ci and cj Path between cityi and cityj
Ordered set {ci} Traverse order

Step 1: To find the optimal way, 10 crystals are initialized at the positions of cities with
original energy E0i D 10;000 in the range of cities (100 * 100).
Step 2: The crystal shell is formed by linking c1, c2, c3, c4, c5, and c7, as shown in
Figure 6(a). The energy of these crystals decreases to 0.
Step 3: According to equations (7), (10), and (13), the energy of un-precipitated crystals
is calculated. ˛ is a random number with a range of [0, 1], P D E01 D 10;000, and
C D E01=N D 1;000.

For example, when t D 1,

P6.1/ D Ei6 �C C ˛P=d60
P6.1/ D 10;000 � 1;000C 0:5 � 10;000=9:487 D 9;527:048109:

Step 4: After a few iterations, when the energy of some crystal(s) is below 0, it/they will
precipitate. It/they will link to the crystal shell according to equations (11) and (12).

For example, when t D 11, Ei9 D �163:6; thus, c9 precipitates.
The energy influence from the crystal shell is calculated as equation (12). ˇ is a

random number with a range of [0, 1].

S D Ei0 D 10;000:

The energy from c5 and its neighbors c7–c9 is calculated as

S59.11/ D ˇS.1=d59 C 1=d79 � 1=d57/ D 540:05:

Thus, we have the energy influence of different crystals:

S59.11/ D 540:05; S19.11/ D 511:65; S29.11/ D 62:43

S79.11/ D 199:03; S49.11/ D 33:88; S39.11/ D �82:8:

Therefore, max¹Sj9º D S59; thus, c9 should join between c5 and c7. Link57 is
broken, and Link59 and Link79 are formed, as shown in Figure 6(b).
Step 5: Repeat steps 3 and 4; crystals precipitate and link to the shell. In this case, c8, c6,
and c10 precipitate at t D 12 and t D 13.

At the end of t D 13, the initial formation of the crystal shell is formed, as shown in
Figure 6(c). The total length of links, also known as the length of paths, is 276.73.
Step 6: When all the crystals have precipitated, the wind blows over the lake. K crystals
are chosen to drop off the shell. For instance, when K D 3, c6, c8, and c9 are chosen.
Repeat steps 3–5; three crystals will re-precipitate and relink to the shell with the order
of c8, c9, and c6. Repeat this process T times.
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FIGURE 6. An example of the crystal energy optimizer on the traveling salesman problem with 10 cities.

The paths after wind blowing are shown in Figure 6(d). The total length of links is
272.35, which is better than the former solution before wind blowing.

5. THE THEORETICAL FOUNDATION OF CEO

5.1. Convergence proofs

The convergence of the algorithm is verified mathematically from two aspects.

(1) The total length of crystal links.
The length function of links is used to evaluate the effectiveness of CEO. If it is

verified that the total length of links decreases to a minimum, the convergence of the
algorithm is verified as well.

(2) The total energy of crystals.
The crystal precipitates and grows because of the reduction of the energy, during

which process the total energy of crystals decreases monotonically to a minimum.

Lemma 1. The optimal way to build a crystal shell is by forming a convex hull. That is, the
length of the convex-hull crystal shell is less than any other method

8link; dconvex � dothers

where dconvex and dothers represent the length of the crystal shell and other methods,
respectively.
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(a) (b) (c)

FIGURE 7. Crystal shells with three crystals, four crystals, and N C 2 crystals, respectively.

Proof . Mathematical induction:
Assume that the number of edges for a convex polygon is n; thus, we have the following:

(1) If n D 3, there is only one way to link three points, the triangle �ABC is as shown in
Figure 7(a). There is no doubt that the convex hull is the minimal way to link.

(2) If n D 4, there are two ways to link, as shown in Figure 7(b), one of which is the
convex hull (A� > B� > D� > C� > A), and the other one is the cross way with
order (A� > B� > C� > D� > A) or (A� > C� > B� > D� > A).

The total length of the crystal links is calculated by

D1 D dAB C dCD C dBC C dDA
D2 D dAB C dCD C dBD C dAC :

Thus, we have

�D D D2 �D1 D .dBD C dAC / � .dBC C dDA/

�D D .dOA C dOC C dOB C dOD/ � .dBC C dDA/

D .dOA C dOD � dDA/C .dOB C dOC � dBC /

Moreover, as we have known, the sum of two edges is bigger than one edge in a triangle;
thus,

�D > 0

namely, D1 < D2.
Therefore, a convex hull in a quadrangle is the shortest total length of links.
Suppose that when n D N , the convex hull DShell.N/ is the shortest link.
Then, as shown in Figure 7(c), an N -polygon can be divided into several triangles and

quadrangles, and when n D NC1,DNC1 D DShell.N/ CD�AN.NC1/ � dAN . The convex
hull of a triangle has been verified to be the minimum; thus,

minDNC1 D DShell.NC1/:

In the meantime, when n D N C2,DNC2 D DShell.N/ CD�AN.NC2/ � dAN , and the
convex hull of a quadrangle has been verified to be the minimum as well; thus,

minDNC2 D DShell.NC2/:

Therefore, that convex-hull crystal shell is the optimal way to link straightforwardly. �
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Lemma 2. During precipitation, the energy released by the lake center attracts crystals from
near to far from the crystal shell. Thus, the crystal grows from shore to center.

Proof . According to the energy function from the lake center to crystals in
Definition 7,

Pi .t/ D
˛P

di0
D

˛P

jjLi � L0jj
:

Thus, we may obtain

P 0i .t/ D
@p

@di0
D �˛

P

d2i0
D �˛

P

jjLi � L0jj2
< 0:

Pi .t/ decreases with the increase of di0; thus, the energy that crystals absorbed from
the lake is inversely proportional to its distance from the center. Therefore, a crystal farther
from the center, whose energy is lower, is easier to precipitate. The crystal precipitates from
shore to center and converges to the lake center by the energy function. �

Lemma 3. During the process of growth, the crystal links to the crystal shell with the
minimal length of link formed by the energy function.

Proof. According to the energy function from the frozen crystal to the
unfrozen crystal,

Si .t/ D maxŒSj i .t/�:

Suppose that dS D jjLj � Li jj C jjL.jC1/ � Li jj � jjLj � L.jC1/jj.
Taking the logarithm for both sides leads to

@Sj i .t/

@DS
D �ˇ

S

dS
2
< 0:

It indicates that the energy absorbed from the frozen crystal Sj i .t/ is inversely
proportional to dS and Si .t/ D maxŒSj i .t/�.

Therefore, as long as we can verify that equation min¹jjLj � Li jj C jjL.jC1/
�Li jj � jjLj �L.jC1/jjº can attract the crystal into the crystal shell in the optimal way, we
may verify the conclusion.

Set the growth process in Figure 8 as an example; crystal cA precipitates and joins into
the crystal convex shell BCDE in two bonds to form a new crystal shell.

FIGURE 8. The crystal growth.
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Assume that the total length of original crystal is

D D dBC C dCD C dDE C dEB :

If crystal cA joins the crystal link BC , the total length of crystal links D0 is

D0 D dAB C dAC C dCD C dDE C dBE

D D C dAB C dAC � dBC :

If crystal cA joins the crystal link DE, the total length of crystal links D00 is

D00 D dAE C dAD C dDE C dBE C dCD

D D C dAE C dAD � dDE :

The minimum is D D min¹D0;D00º. Assume that two neighbor crystals are Lj and
LjC1, respectively; thus, D D min¹D0;D00º D min¹jjLj � Li jj C jjL.jC1/ � Li jj � jjLj
�L.jC1/jjº, which is matched with the energy function exactly.

Therefore, we can prove that the crystal joins the crystal shell with the minimal links by
the energy function during the process of growth. �
Theorem 1. The crystal link function is convergent in the CEO algorithm.

Proof . The main stages of freezing are formation of the crystal shell, precipitation,
and growth of the crystal.

(1) According to Lemma 1, the connection way of the convex hull has the shortest link
length.

(2) Lemma 2 illustrates that the energy released by the lake center attracts crystals that are
close to or distant from the crystal shell, and the crystal grows from the shore of the
lake to the center during precipitation.

(3) Finally, Lemma 3 points out that the crystal joins the crystal shell with the minimal link
by the energy function during the process of growth.

Therefore, when the lake is totally frozen, we have proved that the link length is
shortest. Thus, the crystal links satisfy the conditions of convergence. The conclusion
thus is straightforward. �

Lemma 4. The search scale of the CEO algorithm is global.

Proof . According to Definition 1, if Crystal � " D ¹c1; : : : ; ciº, we have

Crystal � " D CrystalW � "C CrystalI � ":

When t D 0, CrystalI � " D � and CrystalW � " D Crystal � ". And when t D end,
CrystalI � " D Crystal � " and CrystalW � " D � .

After an iteration of the CEO algorithm, all the crystals are traversed. Thus, the global
search scale is verified. �

Lyapunov Stability Theorem. The Second Stability Theorem, which is almost univer-
sally used nowadays, makes use of a Lyapunov function V.x/, which has an analogy to the
potential function of classical dynamics. It is introduced as follows for a system having a
point of equilibrium at x D 0. Consider a function V.x/ W Rn ! R such that V.x/ � 0
with equality if and only if x D 0 (positive definite) and V.x/ D d

dx
V.x/ 	 0 with equality

if and only if x D 0 (negative definite).
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Then V.x/ is called a Lyapunov function candidate, and the system is asymptotically
stable in the sense of Lyapunov.

Theorem 2. The total energy function is bounded and decreases monotonically in the CEO
algorithm.

Proof . Prove the convergence of crystal function by the Lyapunov stability theorem.
Construct the Lyapunov function:

V.p; t/ D

nX
iD0

Ei .t/ D

nX
iD0

.Ei0 CQi .t//:

The crystal releases energy when freezing; thus,
Pn
iD0 .Qi .t// < 0.

jV.p; t/j D j

nX
iD0

.Ei0 CQi .t//j 	

nX
iD0

j.Ei0/j:

Therefore, V.p; t/ is bounded.
Furthermore,

V.p; t/ D

nX
iD0

.Ei0C�1Pi .t/C �2Si .t/C �3Wi .t//:

Substitute the energy function:

V.p; t/D

nX
iD0

�
Ei0 C �1

˛P

jjLi � L0jj
C �2

ˇS

jjLj � Li jj C jjL.jC1/ � Li jj � jjLj � L.jC1/jj
C �3	C

�

@V.p; t/

@t
D

nX
iD0

�
�1

˛

jjLi�L0jj
�
@P

@t
C�2

ˇ

jjLj � Li jjCjjL.jC1/�Li jj�jjLj�L.jC1/jj
�
@S

@t
C �3	 �

@C

@t

�
:

According to the flow of the CEO model (Figure 2) and Definition 5, after the initializa-
tion of crystals, we obtain �1 << �2; �1 << �3 in the process of precipitation. Thus, the
center heat is ignored during the iteration, so let �1 D 0 to simplify the equation, by

@V.p; t/

@t
D

nX
iD0

�
�2

ˇ

jjLj � Li jj C jjL.jC1/ � Li jj � jjLj � L.jC1/jj
�
@S

@t
C �3	 �

@C

@t

�
:

And S < 0 and C < 0. Moreover, all the other parameters is above 0. Thus, we obtain

@V.p; t/

@t
	 0

which means that V.p; t/ decreases monotonically by time.
Therefore, that the energy function is bounded and decreases monotonically in the CEO

algorithm has been verified. �

Convergence Theorem (Kellogg et al. 1929) Supposing that A is an algorithm on X
and 
 is the set of solution, the initial point is given as x.1/ 2 X , and iterations are
as follows.
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If x.k/ 2 
 , the iteration is finished; or set x.kC1/ 2 A.x.k//.
Let k C 1 substitute k, and repeat the preceding process. Thus, we obtain the sequence

¹x.k/º.
Then set the following:

(1) Sequence ¹x.k/º is contained in compact subset X .
(2) There exists a continuous function, which is a decreasing function of 
 and A.
(3) Mapping A is closed on the complement of 
.

The limitation of any convergent subsequence of sequence ¹x.k/º belongs to 
.

Theorem 3. The total energy function E.t/ is convergent and can reach the stable point.

Proof . According to the convergence theorem, we verify the convergence of the CEO
algorithm from the following aspect:

(1) It has been verified that the search scale of the CEO algorithm is global, which confirms
that the crystal set ¹Crystal � "iº obtained in each iteration is contained in a compact
subset Crystal � ".

(2) The fact that there exists a continuous ordered function E.t/ has been proved in
Theorem 4. Moreover, the function is a descent function about the crystal solution
¹Crystal � "iº and the initial crystal set ¹c1; : : : ; ciº.

(3) Set Crystal � "optimal as the optimal solution, which is the solution set when all the crys-
tals have precipitated. In addition, the total energy is 0. We obtain a solution set in each
iteration of the process of freezing. Before the final optimal solution, the relationship of
function mapping is one to one. Therefore, we may conclude that the complement set
of the optimal solution is closed.

According to proofs (1–3), we may infer that the energy function of the CEO algorithm
satisfies the three rules of the convergence theorem. Therefore, the limitation of convergent
subsequence of sequence ¹Crystal � "iº belongs to ¹Crystal � "optimalº. The conclusion thus
is straightforward. �

5.2. The Effectiveness for TSP Analysis

Theorem 4. The CEO algorithm is suitable for the TSP.

Proof . An optimal traversal order S D ¹s1; s2; : : : ; snº for cities City D ¹city1;
city2; :::; citynº with the minimal length of all the paths passed by is required in
the TSP.

Similarly, crystals precipitate in some order and join together by two-bond links in
the CEO algorithm. From Theorem 1, we know that the total length of crystal links is
convergent and the crystals join together with the shortest links. Moreover, Theorem 3
tells us that the CEO algorithm is a global search algorithm and its energy function can
reach stability.

Therefore, because the connection between the CEO algorithm and TSP has been ana-
lyzed, it is reasonable to solve TSP with the CEO algorithm. Let the crystal represent the
city in TSP. Moreover, the order of crystal precipitation is the order in which we traverse
the cities. The total length of crystal links is the length of paths as well. The convergence of
crystal links has been verified earlier, so we conclude that the CEO algorithm can find the
optimal TSP path.

In summary, the CEO algorithm can solve the TSP. �
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6. SIMULATIONS AND COMPARISONS

In this section, the performance of CEO for TSP is examined and analyzed by simulation
and comparison. To begin with, we discuss the selection of key parameters by experimental
results. Second, the effectiveness and efficiency of CEO are tested by simulating instances
in TSPLIB95, which is a benchmark of TSP. Third, the simulation results are compared
with the other effective algorithms for TSP. At last, the parallelism of the CEO is tested by
simulations with different numbers of processors.

The simulation environment is in Matlab R2011a on the HPCC of Lenovo Shenteng
6800, whose cluster has eight computation nodes and a console node. Each computation
node is a high-performance server whose memory is 24 GB with two 2.4-GHz quad-core
CPUs. All the servers’ operating system is Red Hat Enterprise Linux 7.

6.1. How to Use the CEO for TSP

First, an example of the overall process and performance in each step is given to explain
the solving process of CEO for TSP in detail.

Example 2. Solution of CEO for Ch150 instance in TSPLIB95.

Setting the solution for the Ch150 instance as an example, the solving processes of CEO
for TSP are shown in Figure 9. It should be noted that the crystals in the CEO correspond to
the cities in TSP. Likewise, crystal links correspond to paths. There are 150 cities in instance
Ch150, so 150 crystals are initialized. At the beginning of CEO, the crystal shell is formed
after initialization of crystals, as shown in Figure 9(a). From Figure 9(b–e), crystals precip-
itate successively and join the crystal shell through crystal links. By this means, cities are
visited, and paths are selected. After forming the initial shape, a wind-blow iteration takes
place. The number of iteration of a wind-blow process T is set as 500 runs. The perfor-
mance with different values of K is presented in Figure 9(f–h), where K D 90 matches the
optimal known solution for Ch150 (Figure 9h).

The values of the total length of links of crystals during the iteration, which are also the
total length of paths, are shown in Figure 10. Analyzing the performance of the CEO (as
shown in Figures 9 and 10), we may draw the following inferences.

FIGURE 9. Solving process and performance of the crystal energy optimizer for the traveling salesman
problem with different values of K.
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FIGURE 10. Solution process of crystal energy optimizer on a280 with different values of K.

(1) The process of growth of crystals is from outside to inside, including all the crystals on
the lake.

(2) A suboptimal solution is obtained by the initial shape of the crystal, which is unrelated
with K.

(3) Wind-blow can optimize the solution further.
(4) The performance of the final result is related with K and T .
(5) The running time is contributed by both processes of formation and wind-blow. There-

fore, running time will grow with the increase of K and T . Moreover, if K 
 N
(number of cities), the running time is mainly determined by K and T .

6.2. Parameters Analysis

The parameters of the CEO can be classified into two categories according to the two
main processes of algorithm, which are precipitation–growth and wind-blow.

For the precipitation–growth process, scale factors ˛; ˇ, and 	 in equations (10), (12),
and (13) are uniform random numbers in the range of (0, 1). Decision factors �1, �2, and
�3 in equation (7) determine the dominant role of energy factors in different processes.
Therefore, their values vary in different steps. In detail, decision factor �1, which decides the
role of center energy, will be set as �1 D 100 in the process of precipitation and �1 D 100 in
the process of growth. On the contrary, decision factor �2, which maintains the influence of
the energy of frozen crystals, will be set as �2 D 0when crystals precipitate and �2 D �100
when they grow. In addition, decision factor �3, which represents the weight of the wind,
is constant as �3 D �50 for all processes. These parameters are key factors that make
sure crystals precipitate and grow in a proper way. The summary of parameters is shown in
Table 3.

On the other hand, for the wind-blow process, two key parameters, number of melting
crystals for each iteration K and total iteration number T , have a pivotal influence on the
overall performance of CEO. Besides, the setting of total iteration number T should take
the total number of cities into consideration. It is set as T D 500 when the number of
cities is less than 2,000 and T D 1;000 when the number of cities is larger than 2,000.
A number of different alternative values are tested. Those that give the best computational
results concerning both the quality of the solution and the computational time are selected.

Thus, we mainly discuss the impact and selection of K in this subsection. To test
the effectiveness of different K, the performance of CEO is tested on 50 TSP bench-
mark instances.



308 COMPUTATIONAL INTELLIGENCE

TABLE 3. Parameter Settings.

Parameters Values Meanings

˛; ˇ; 	 [0, 1] Scale factors
�1 100 (in the process of precipitation); Decision factor for center energy

0 (in the process of growth)
�2 0 (in the process of precipitation); Decision factor for frozen crystal

�100 (in the process of growth)
�3 �50 Decision factor for wind
K 55% * CityNum Number of melted crystal for each iteration
T 500 (for small and medium scales); Iteration number of wind-blow

1,000 (for large scale)

TABLE 4. Solution and Running Time of Crystal
Energy Optimizer on Berlin52 with Different Values of K.

Solution CPU (s)

K AVG BEST Std. AVG BEST

0 8,315.860 8,315.86 0 0.07 0.06
1 8,253.392 8,241.82 12.21 0.09 0.06
5 8,195.646 7,850.44 99.13 0.07 0.05
10 8,098.300 7,607.93 151.53 0.06 0.05
15 8,064.664 7,688.79 149.66 0.07 0.07
20 8,070.367 7,753.16 148.86 0.17 0.09
25 8,031.522 7,678.26 173.20 0.32 0.24
30 8,010.475 7,542.21 179.24 0.37 0.30
35 7,985.700 7,542.53 159.22 0.37 0.28
40 8,026.739 7,618.08 191.59 0.53 0.33
45 8,010.969 7,675.20 178.34 0.53 0.33
50 7,994.735 7,673.22 161.86 0.42 0.37

Three examples (Berlin52, Ch150, and a280) are shown in Tables 4–6 (the optimal
solution has been highlighted). For running time, it is obvious that both average and best
running time will increase with the increase of K. However, the change of the solution
with K is not monotonous. The best solution is not obtained by maximal K. For example,
K D 30–35 obtains the best solution for Berlin52, K D 80–90 for Ch150, and K D 150
for a280. It should be noted that a higher K also brings a higher standard deviation.

Because different optimalK is gained in different TSP instances, to find the relationship
between optimal K and number of cities, two factors (quality and percent number) are
introduced. Thus, the solutions of different instances and its corresponding K are uniform.

! D .Solution � OPT/ � 100=OPT (18)

PercentNum D K=TotalNum (19)

where ! give the quality of the solution, OPT is the best known solution, and the total
number of cities is given by TotalNum. Therefore, Figure 11 shows the performance (quality
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TABLE 5. Solution and Running Time of Crystal
Energy Optimizer on Ch150 with Different Values of K.

Solution CPU (s)

K AVG BEST Std. AVG BEST

0 7,531.920 7,531.92 0 0.55 0.41
1 7,312.917 7,195.94 56.38 0.59 0.57
5 7,099.275 7,016.43 27.12 0.62 0.44
10 7,071.178 6,882.09 48.75 0.70 0.63
20 7,041.349 6,870.89 72.55 0.85 0.71
30 7,034.675 6,775.12 84.63 0.98 0.69
40 7,010.620 6,809.84 81.35 1.24 0.95
50 7,010.253 6,735.42 91.37 1.42 0.89
60 6,987.152 6,794.28 81.52 1.72 1.31
70 6,988.371 6,684.98 92.53 1.84 1.13
80 6,971.472 6,528.10 95.34 2.26 1.55
90 6,951.810 6,528.30 97.86 1.61 0.89
100 6,961.911 6,786.99 82.88 1.50 1.01
110 6,973.996 6,760.25 94.41 3.26 2.50
120 6,962.659 6,760.71 104.01 3.49 2.30

TABLE 6. Solution and Running Time of CEO on a280
of TSPLIB with Different Values of K.

Solution CPU (s)

K AVG BEST Std. AVG BEST

0 3,081.000 3,081.00 0 0.98 0.87
30 2,736.453 2,699.94 16.16 1.33 0.86
60 2,731.700 2,686.25 20.65 1.68 1.19
90 2,729.252 2,672.18 19.70 3.14 1.61
120 2,728.575 2,683.27 15.37 4.09 2.01
150 2,719.460 2,579.21 23.07 6.49 2.78
180 2,728.987 2,579.90 32.57 9.07 4.08
210 2,739.320 2,633.12 42.13 9.91 5.13
240 2,742.510 2,681.39 53.78 10.32 5.88
270 2,761.440 2,691.99 66.91 12.18 8.21

of the solution) of CEO with different percent values of K on different TSP instances. The
best range of K is 55–65% of the total number of cities.

6.3. Effectiveness of the CEO

The algorithm is tested on a set of 45 Euclidean sample problems with sizes ranging
from 100 to 7,397 nodes. Each instance is described by its TSPLIB name and size. For
example, in Table 7, the instance named Rd400 has a size equal to 400 cities. Data in the
crystal formed columns are obtained before wind-blow, and data in wind-blow columns are
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FIGURE 11. Performance of the algorithm with different values of K on different traveling salesman
problem instances.

TABLE 7. Performance of Crystal Energy Optimizer on TSPLIB95.

Crystal formed Wind-blow

Instance OPT Solution ! (%) CPU (s) Best AVG !AVG (%) !BST (%) CPU (s)

Rd400 15,281 16,108 5.1341 3.06 15,281 15,281 0 0 13.16
Fl417 11,861 12,654 6.2668 1.35 11,861 11,922 0.5143 0 9.82
Pr439 107,217 110,900 3.321 2.67 107,217 107,217 0 0 8.73
Pcb442 50,778 60,019 15.397 4.59 50,778 50,778 0 0 15.23
D493 35,002 41,853 16.369 5.21 35,002 35,002 0 0 16.52
Rat575 6,773 7,203 5.9697 7.8 6,773 6,782 0.1329 0 18.07
P654 34,643 37,758 8.2499 8.71 34,643 34,643 0 0 19.89
D657 48,912 49,786 1.7555 3.41 48,912 48,912 0 0 19.66
Rat783 8,806 9,113 3.3688 6.06 8,806 8,825 0.2158 0 27.5
dsj1000 18,659,688 18,676,291 0.0889 8.45 18,659,688 18,659,979 0.0016 0 37.69
Pr1002 259,045 261,211 0.8292 7.91 259,045 259,045 0 0 40.32
u1060 224,094 227,928 1.6821 11.3 224,094 224,094 0 0 47.8
vm1084 239,297 239,822 0.2189 10.9 239,297 239,297 0 0 59.3
Pcb1173 56,892 57,001 0.1912 9.3 56,892 56,892 0 0 60.9
D1291 50,801 53,113 4.353 11.7 50,801 50,825 0.0472 0 63.1
Rl1304 252,948 255,213 0.8875 12.8 252,948 252,948 0 0 80.3
Rl1323 270,199 278,211 2.8798 12.6 270,199 270,199 0 0 84.1
nrw1379 56,638 57,221 1.0189 20.6 56,638 56,640 0.0035 0 89.6
Fl1400 20,127 22,121 9.0141 18.9 20,127 20,127 0 0 83.2
u1432 152,270 156,311 2.5852 26.2 152,270 152,270 0 0 98
Fl1577 22,249 23,813 6.5678 27.9 22,249 22,258 0.0405 0 87.4
d1655 62,128 62,975 1.345 32.9 62,130 62,141 0.0209 0.00322 94.5
vm1748 336,556 339,200 0.7795 33.1 336,556 336,571 0.0045 0 108.7
u1817 57,201 59,311 3.5575 30.2 57,201 57,201 0 0 103
Rl1889 316,536 318,215 0.5276 37.8 316,536 316,564 0.0088 0 114.4
D2103 80,450 86,991 7.5192 40.4 80,450 80,484 0.0423 0 109.1
u2152 64,253 65,116 1.3253 44.8 64,253 64,318.4 0.1018 0 110.9
u2319 234,256 234,513 0.1096 50.3 234,256 234,298 0.0179 0 136.9
Pr2392 378,032 378,387 0.0938 61.1 378,032 378,122 0.0238 0 164.7
pcb3038 137,694 155,275 11.322 84.9 137,922 138,620 0.6725 0.16558 212.5
fl3795 28,772 30,640 6.0966 98.9 28,801 28,898 0.4379 0.10079 245.2
fnl4461 182,566 183,612 0.5697 102.2 182,998 187,641 2.7798 0.23663 311.6
rl5915 565,530 596,211 5.146 131.8 577,112 579,321 2.4386 2.04799 381.7
rl5934 556,045 578,006 3.7994 342.9 560,144 570,001 2.5099 0.73717 431.3
pla7397 23,260,728 23,921,000 2.7602 622.7 23,261,231 23,591,110 1.4203 0.00216 629.3
AVG 1,338,407.66 1,361,802.91 4.03 55.3 1,338,889.8 1,348,835.04 0.33 0.09 118.12

the final solution. All the experiments in this subsection are repeated 500 times. Table 7
shows the experimental results for sizes of instances lager than 400. !BST is the best quality
of the solution and !AVG is the average quality of the solutions. By analyzing Table 7, the
following inferences and conclusions are drawn.
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(1) The best solution obtained in all but seven instances equals the optimal solution, mak-
ing an 80% successful rate for medium and large data. For the other seven instances,
only the quality of the solution of rl5915 is 2%, while quality of all the others is less
than 1%.

(2) The average solution obtained in 17 instances equals the optimal solution. For the other
instances, only the CEO has not found the optimum in one or two runs. However, even
if the best solution is not found in all runs, the solutions obtained by CEO are very close
to the best solutions.

(3) Judging from the CPU time needed, which is relatively low, the CEO is very efficient.
(4) Another important character of the CEO is that the suboptimal solution obtained by the

crystal formation process is relatively acceptable and with extremely high efficiency.
The average solution quality in this process is 4.03%, which is an acceptable solution
in some cases and even better than some well-known algorithms. (Compared data are
shown in the next subsection.) However, the time consumed is only 20–50% of the final
solution. This high efficiency is of great significance in many applications in real life,
such as GPS in mobile vehicles, which has a high requirement for speed of solution but
relatively less for accuracy.

Furthermore, it should also be noticed that to present a very efficient and effective
algorithm, the selection of parameters, particularly K and T in this case, takes both
running time and convergence into consideration. If we increase the number of melting
crystalsK and the number of iteration T , better solutions with higher time consumption
could be acquired.

6.4. Comparisons between CEO and Other State-of-the-Art Algorithms

To evaluate the effectiveness and efficiency of CEO, the performance and solution are
analyzed furthermore in this subsection. The experiments are divided into three groups as
small-scale, medium-scale, and large-scale groups according to the size of cities in TSPLIB.
Comparisons with other algorithms are performed. However, limited by the data given by
references, we have to compare with different algorithms in different scale groups. The
referred algorithms used in this subsection are state-of-the-art algorithms from references
in recent years.

6.4.1. Small Scale: 100–500. For the small-scale instances, 500 different runs with
the selected parameters (in Table 8) were performed for each of the benchmark instances.
The solutions for the same instances of CEO and three other algorithms, honey-bee mating
optimization (HBMO) (Marinakis, Marinaki, and Dounias 2011), greedy subtour mutation
(GSTM) (Albayrak and Allahverdi 2011), and populated iterated greedy algorithm with
inver-over operator (IGP_IO) (Tasgetiren et al. 2013), are shown in Table 8. From Table 8
(the optimal solution has been highlighted), the following could be observed:

(1) CEO and HBMO can always find the optimal solution in a short time for all the
instances, while GSTM and IGP_IO cannot.

(2) The HBMO is a competitive algorithm with all the best solution equaling optimum;
however, the running time of CEO is almost half of that of HBMO. Figure 12 shows
the average time consumed by each algorithm. The running time of IGP_IO and CEO
is far lower than that of the other two. In addition, CEO’s is a little lower than IGP_IO’s
as well.

Therefore, considering both the quality and running time of the solution, CEO has
the best performance of all in the small-scale group.
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FIGURE 12. Comparison of running time.

TABLE 9. Comparison of Quality of Solutions for Traveling Salesman Problem between CEO and
HK-ACO, MMAS, and HBMO (Standard Quality for Ranking, Average Results from 1,000 runs).

HK-ACO (Li, Ju, and Zhang 2008) MMAS (Li et al. 2008) HBMO (Marinakis et al. 2011) CEO

Best AVG Best AVG Best AVG Best AVG

Pr1002 0.05057 0.085545 0.044008 0.378313 0 0.001 0 0
Pcb1173 0.008789 0.137981 0.021093 0.100893 0 0.003 0 0
D1291 0 0.014567 0 0.091927 0 0 0 0
Rl1304 0 0.083416 0 0.229363 0 0 0 0
Rl1323 0.009993 0.136566 0.020355 0.194856 0 0 0 0
Fl1400 0.168927 0.504049 0.462066 0.855418 0 0.011 0 0
Fl1577 0.395523 0.736348 0.053935 0.785069 0 0.022 0 0.041
Rl1889 N/A N/A N/A N/A 0 0.017 0 0.009
D2103 N/A N/A N/A N/A 0 0.041 0 0.043
Pr2392 N/A N/A N/A N/A 0 0.026 0 0.018
AVE 0.090543 0.242639 0.085922 0.376549 0 0.0121 0 0.0111

CEO, crystal energy optimizer; HBMO, honey-bee mating optimization; HK-ACO, Held–Karp ant colony opti-
mizer; MMAS, MAX–MIN ant system; N/A, the result is not mentioned in the reference. The optimal solution
for each instance has been highlighted in the table.

6.4.2. Medium Scale: 500–2,000. The medium-scale experiments choose the
instances with sizes from 500 to 2,000 from TSPLIB. Comparisons among the best-known
improved ACO, such as Held–Karp ACO and MAX–MIN ant system, and the HBMO are
performed in Table 9.

Marinakis, Migdalas, and Pardalos (2005, 2011) raise a ranking among the best-known
algorithms from tour constructions heuristics, simple local search algorithms, variable
neighborhood search implementations, and meta-heuristics for TSP. The standard for rank-
ing is their average quality over 10 instances with a size over 1,000, which are Pr1002,
Pcb1173, D1291, Rl1304, Rl1323, Fl1400, Fl1577, Rl1889, D2103, and Pr2392. Because
the computational speed is mainly affected by the compiler and hardware, the comparisons
and ranking with the algorithms from the literature are performed only in terms of the qual-
ity of the solutions. Therefore, we run CEO over these 10 instances and have the best and
average solutions from 500 runs, as shown in Table 9.

The proposed CEO algorithm is ranked in third place among 55 algorithms. (The top 30
are presented in Table 10, and for other details, readers should refer to Marinakis et al. (2011,
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TABLE 10. Ranking of Algorithms.

No. Method Average

1 Tour merging (Applegate, Cook, and Rohe 2003) 0.0034
2 PHGA (Nguyen et al. 2007) 0.0066
3 CEO 0.0111
4 HBMO for TSP 0.0121
5 ILK-NYYY (Johnson and McGeoch 2007) 0.0354
6 KHs MTV on LK (Helsgaun 2000) 0.0367
7 ILK-J (Johnson and McGeoch 1997) 0.0853
8 ALK (Johnson and McGeoch 2007) 0.48
9 Concorde CLK (Applegate et al. 2003) 0.4863
10 I-3-Opt-J (Johnson and McGeoch 1997) 0.514
11 ACR chained LK (Applegate et al. 2003) 0.5827
12 ILK-N (Neto 1999) 0.5924
13 Helsgaun LK (Helsgaun 2000) 0.669
14 BSDPH (Helsgaun 2000) 0.71
15 LK-HK-Christo-starts (Helsgaun 2000) 1.051
16 TS-LK-DB (Zachariasen and Dam 1996) 1.06
17 TS-SC-DB (Zachariasen and Dam 1996) 1.111
18 ENS-GRASP (Marinakis et al. 2005) 1.181
19 LK-NYYY (Helsgaun 2000) 1.228
20 Johnson LK (Johnson and McGeoch 1997) 1.388
21 TS-LK-LK (Zachariasen and Dam 1996) 1.475
22 TS-SC-SC (Zachariasen and Dam 1996) 1.483
23 Neto LK (Neto 1999) 1.547
24 SC EC (Johnson and McGeoch 2007) 1.66
25 VNS-3-Hyperopt (Johnson and McGeoch 2007) 2.061
26 Concorde-LK (Applegate et al. 2003) 2.778
27 VNS-2-Hyperopt (Helsgaun 2000) 2.874
28 Applegate LK (Applegate et al. 2003) 3.2
29 3opt-B (Bentley 1992) 3.288
30 3opt-J (Johnson and McGeoch 1997) 3.392

D2103 u2152 u2319 Pr2392 pcb3038 fl3795 fnl4461 rl5915 rl5934 pla7397
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FIGURE 13. Performance of the CEO for over 2,000-city instance in TSPLIB95.
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2005.) Table 10 illustrates that our CEO performs better than most of the tour constructions
heuristics, simple local search algorithms, variable neighborhood search implementations,
and meta-heuristics.

6.4.3. Large Scale: Larger than 2,000. For the large-scale group with size over 2,000,
CEO still has a relatively good performance with the average quality of the solution of less
than 3%, while most of the other existing algorithms have difficulty in solving large-scale
TSP. To illustrate the quality of solutions of CEO, the box figure in Figure 13 is the statistics
over 500 runs. The average and best solutions of CEO are already shown in Table 7. The
best quality of the solutions (all but two instances of less than 1% and two instances of less
than 2%) and the average quality of solutions (less than 3%) verify the effectiveness of CEO,
while the short distance of the box (at most 2%) also indicates the robustness of CEO.

6.5. Efficiency and Parallelism of the CEO

In this section, we will test and analyze CEO’s parallelism. The parameters are the same
as listed in Table 3. The iteration number of wind-blow is set as T D 1;000. The range of
the number of cities is from 500 to 10,000. The positions of cities are obtained randomly.
We test the parallel effect of CEO when the number of processors used is 1, 2, 4, 8, 12, 16,
and 20. For each experiment, the running time under a certain number of iterations and the
speedup ratio calculated from it are recorded.

Results in Table 11 are the average results from 500 runs. Figure 14 is the relationship
between running time and scale number of cities with different numbers of processors. By
analyzing the parallel results, the following conclusions are drawn.

(1) Running time reduces with the increase of the number of processors allocated continu-
ously, while the CEO’s parallel processing speed accelerates with it.

(2) With the scale of cities expanding, CEO is able to maintain a stable and high speedup
ratio. When the number of cities equals 10,000, the solution could be obtained in 20 s.
As a result, the speed of CEO accelerates further, making it more efficient for large-scale
problems.
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FIGURE 14. Results of parallel experiments.
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7. CONCLUSION

A novel nature-inspired parallel algorithm is proposed in this article. The crystal energy
algorithm mimics the process of the freezing phenomenon of a lake. Physical and mathe-
matical models are built based on the precipitation rules from publications of Science and
Nature. The CEO algorithm contains two models: precipitation–growth model and wind-
blow model. The first model guarantees the global search range and an initial suboptimal
solution by crystals precipitating and growing in a proper order. The second model pro-
tects the CEO from local optimum effectively. The effectiveness and convergence of our
algorithm are verified through the Lyapunov stability theorem and the convergence theorem
theoretically. Furthermore, the experimental results of CEO on TSP prove its applicability
for solving complex NP-complete problems. Comparing the performance on quality of the
solution and computer time of CEO with that of other algorithms, conclusions from the sta-
tistical analysis show that the average performance of CEO over all instances is significantly
better than that of others, especially for the large-scale instances. Last, a parallelism test for
CEO is carried out on a series of TSP instances. Experimental results indicate that CEO has
an excellent parallelism property.

In future works, we are going to focus on the improvement and application of our algo-
rithm. First, the wind-blow model is an important part of the CEO, keeping it from local
optimum. From our experiments, we also can tell that it is the most time-consuming part
as well. Therefore, to improve the performance of the CEO, the wind-blow model could be
modified from two aspects. On the one hand, the crystals could be chosen by rules instead
of randomly. If we could pick the “bad” crystals wisely, computer time would be saved. On
the other hand, the number of crystal chosen K could be set dynamically. Different num-
bers of crystals dropped in each iteration might improve the effect of the wind. In sum, our
major strategy to improve the CEO is to make it more intelligent. Second, CEO is applicable
for large-scale complicated problems because of its high parallelism and outstanding qual-
ity of solutions. Therefore, we will attempt to solve more real-life complex problems with
the CEO in the future.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China
under grant nos. 60905043, 61073107, and 61173048, the Innovation Program of Shanghai
Municipal Education Commission, and the Fundamental Research Funds for the Central
Universities.

REFERENCES

ALBAYRAK, M., and N. ALLAHVERDI. 2011. Development a new mutation operator to solve the traveling
salesman problem by aid of genetic algorithms. Expert Systems with Applications, 38(3):1313–1320.

ALTMAN, E., P. NAIN, A. SHWARTZ, and Y. XU. 2013. Predicting the impact of measures against p2p networks:
transient behavior and phase transition. IEEE/ACM Transactions on Networking, 21(3): 935–949.

ANONYMOUS. 2008. Nature’s guiding light. Nature Photonics, 2(11): 639–639.

APPLEGATE, D., W. COOK, and A. ROHE. 2003. Chained Lin–Kernighan for large traveling salesman problems.
INFORMS Journal on Computing, 15(1): 82–92.

BELL, R. E. 2008. The unquiet ice. Scientific American, 298(2): 60–67.

BENTLEY, J. J. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing,
4(4): 387–411.



318 COMPUTATIONAL INTELLIGENCE

BONABEAU, E., M. DORIGO, and G. THERAULAZ. 2000. Inspiration for optimization from social insect
behaviour. Nature, 406(6791): 39–42.

CUI, Z., D. LIU, J. ZENG, and Z. SHI. 2012. Using splitting artificial plant optimization algorithm to solve toy
model of protein folding. Journal of Computational and Theoretical Nanoscience, 9(12): 2255–2259.

FORREST, S. 1993. Genetic algorithms: Principles of natural selection applied to computation. Science,
261(5123): 872–878.

HE, S., Q. H. WU, and J. SAUNDERS. 2009. Group search optimizer: An optimization algorithm inspired by
animal searching behavior. IEEE Transactions on Evolutionary Computation, 13(5): 973–990.

HE, S., J. CHEN, P. CHENG, Y. GU, T. HE, and Y. SUN. 2012. Maintaining quality of sensing with actors in
wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(9): 1657–1667.

HELSGAUN, K. 2000. An effective implementation of the Lin–Kernighan traveling salesman heuristic. European
Journal of Operational Research, 126(1): 106–130.

ISHTEVA, M., P. A. ABSIL, S. VAN HUFFEL, and L. DE LATHAUWER. 2011. Tucker compression and local
optima. Chemometrics and Intelligent Laboratory Systems, 106(1): 57–64.

JOHNSON, D. S., and L. A. MCGEOCH. 1997. The traveling salesman problem: a case study in local optimization.
Local Search in Combinatorial Optimization, 1: 215–310.

JOHNSON, D. S., and L. A. MCGEOCH. 2007. Experimental analysis of heuristics for the stsp. In The Traveling
Salesman Problem and Its Variations. Springer: New York, pp. 369–443.

KELLOGG, O. D. ET AL. 1929. Foundations of Potential Theory. Dover: New York.

KEPHART, J. O. 2011. Learning from nature. Science, 2(5): 682–683.

KIRKPATRICK, S., C. GELATT, and M. VECCHI. 1983. Optimization by simulated annealing. Optimization by
Simulated Annealing, 220(4598): 671–680.

KRINNER, G., J. MANGERUD, M. JAKOBSSON, M. CRUCIFIX, C. RITZ, and J. I. SVENDSEN. 2004. Enhanced
ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature, 427(6973): 429–432.

LI, L., S. JU, and Y. ZHANG. 2008. Improved ant colony optimization for the traveling salesman problem.
In 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA),
vol. 1, IEEE, Changsha, China, pp. 76–80.

LIM, S., and J. ZHU. 2013. Integrated data envelopment analysis: Global vs. local optimum. European Journal
of Operational Research, 229(1): 276–278.

LIM, W. H., and N. A. MAT ISA. 2014. An adaptive two-layer particle swarm optimization with elitist learning
strategy. Information Sciences, 273: 49–72.

LING, Z., X. FU, W. JIA, W. YU, and D. XUAN. 2011. A novel packet size based covert channel attack against
anonymizer. In 2011 Proceedings IEEE Infocom, pp. 186–190.

LIU, F., and Z. ZHOU. 2014. An improved QPSO algorithm and its application in the high-dimensional complex
problems. Chemometrics and Intelligent Laboratory Systems, 132(3): 82–90.

MARINAKIS, Y., A. MIGDALAS, and P. M PARDALOS. 2005. Expanding neighborhood grasp for the traveling
salesman problem. Computational Optimization and Applications, 32(3): 231–257.

MARINAKIS, Y., M. MARINAKI, and G. DOUNIAS. 2011. Honey bees mating optimization algorithm for the
euclidean traveling salesman problem. Information Sciences, 181(20): 4684–4698.

MAYBANK, J., and N. N. BARTHAKUR. 1967. Growth and destruction of ice filaments in an electric field.
Computational Optimization and Applications, 216(10): 50–52.

MCKAY, C. P., G. . D CLOW, R. A. WHARTON, and S. W. SQUYRES. 1985. Thickness of ice on perennially
frozen lakes. Nature, 313(2): 561–562.

MEHRJOO, S., A. SARRAFZADEH, and M. MEHRJOO. 2015. Swarm intelligent compressive routing in wireless
sensor networks. Computational Intelligence, 31(3): 513–531.

MURRAY, B. J, D. A. KNOPF, and A. K. BERTRAM. 2005. The formation of cubic ice under conditions relevant
to Earth’s atmosphere. Nature, 434(7030): 202–205.

NETO, D. M. 1999. Efficient cluster compensation for Lin–Kernighan heuristics, Ph.D. Thesis.



CRYSTAL ENERGY OPTIMIZATION ALGORITHM 319

NEUMANN, J. V. 1955. Mathematical Foundations of Quantum Mechanics. No. 2. Princeton University Press:
Princeton, NJ.

NGUYEN, H. D., I. YOSHIHARA, K. YAMAMORI, and M. YASUNAGA. 2007. Implementation of an effec-
tive hybrid GA for large-scale traveling salesman problems. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 37(1): 92–99.

RBOUH, I., and A. E IMRANI. 2014. Hurricane-based optimization algorithm. AASRI Procedia, 6: 26–33.

SADI, Y., and S. C. ERGEN. 2013. Optimal power control, rate adaptation, and scheduling for UWB-
based intravehicular wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(1):
219–234.

SCHMITT, M., and R. WANKA. 2015. Particle swarm optimization almost surely finds local optima. Theoretical
Computer Science, 561: 57–72.

STRUNK, T. H., C. R. TRACY, and M. KLEIBER. 1973. Perspectives on linear heat transfer. Science, 181(4095):
184–186.

SUN, J., J. M. GARIBALDI, N. KRASNOGOR, and Q. ZHANG. 2013. An intelligent multi-restart mimetic
algorithm for box constrained global optimisation. Evolutionary Computation, 21(1): 107–147.

TANG, Y., P. JU, H. HE, C. QIN, and F. WU. 2013. Optimized control of DFIG-based wind generation
using sensitivity analysis and particle swarm optimization. IEEE Transactions on Smart Grid, 4(1):
509–520.

TASGETIREN, M. F., O. BUYUKDAGLI, D. KIZILAY, and K. KARABULUT. 2013. A populated iterated greedy
algorithm with inver-over operator for traveling salesman problem. In Swarm, Evolutionary, and Memetic
Computing. Springer: Cham, Switzerland, pp. 1–12.

TEIMOURZADEH, S., and K. ZARE. 2014. Application of binary group search optimization to distribu-
tion network reconfiguration. International Journal of Electrical Power & Energy Systems, 62(11):
461–468.

ZACHARIASEN, M., and M. DAM. 1996. Tabu search on the geometric traveling salesman problem. In Meta-
heuristics. Springer: New York, pp. 571–587.

ZHAN, Z., J. ZHANG, Y. LI, and Y. SHI. 2011. Orthogonal learning particle swarm optimization. IEEE
Transactions on Evolutionary Computation, 15(6): 832–847.

ZHANG, H., Y. ZHU, and H. CHEN. 2014. Root growth model: a novel approach to numerical function
optimization and simulation of plant root system. Soft Computing, 18(9): 521–537.

APPENDIX A: THE CEO FOR CONTINUOUS OPTIMIZATION

The general CEO has been introduced in this article. Its performance on the discrete
problem, TSP, has been tested. We attempt to solve continuous optimization problems by
CEO in this Appendix.

A1. Description of CEO for Continuous Optimization

Different from the strategy for the discrete problems, mathematical models of CEO have
to make some adjustment for the continuous problems. The flowchart of CEO is the same.
However, the output at the end of freezing is different. Instead of the links with the least
energy between crystals, the center of crystal shell is required to be located at the end of
freezing. f .x/ is the standard energy function to determine the position of a crystal in the
lake. The crystal ci obtaining minf .ci / is the center of the crystal shell.

Elaborate descriptions are as follows.

Step 1 (Initialization):
S crystals with n dimensions as ci D .ci1; ci2; : : : ; cin/ 2 Rn and their initial energy

Ei0 are initialized.
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Step 2 (Formation of crystal shell):
Tested by the energy function f .x/, the last NS crystals, which are in the lowest

positions will precipitate. They will link together to form the crystal shell. However, the
frozen crystals will not continue to participate in in the freezing process. To maintain
the constant number of crystals, another NS crystals will be re-initialized in the lake to
substantiate them.

Step 3 (Precipitation):
Crystal energy at time t Qi .t/ is influenced by three factors as we have discussed.

Qi .t/ D �1Pi .t/C �2Si .t/C �3Wi .t/:

Because the center of the crystal is not determined, the best position of the crystal will
be regarded as the temporal center Lcenter. Similarly, the expression of influence from the
center and wind is defined by

Pi .t/ D
˛P

jjLi � Lcenterjj

Wi .t/ D 	C:

Step 4 (Precipitation):
After being tested by the energy function f .x/, top Np crystals will precipitate.

According to the property of crystals, they will absorb energy from other crystals nearby.
Therefore, a crystal shell with extension boundaries is formed by them as follows.

Assuming that we have a set of top-position crystals Ctop D ¹c1; : : : ; cnC1º, the
freezing range of the j th dimension is

cij_down D cmin � jcmax � cminj

cij_up D cmax C jcmax � cminj

where cmax is the upper boundary of Ctop and cmin is the lower boundary of Ctop in the
j th dimension.

Step 5 (Growth): After precipitation of Ctop, an expanded crystal shell is built. Affected
by the crystal shell formed in step 4, the crystals inside it will begin to precipitate and
link together to grow. Thus, NG crystals will precipitate inside the shell randomly. Test
these crystals by the energy function and define their positions in the lake. However, not
all the crystals will link together because of the energy absorbed from the center. Tested
by the energy function, the top Np crystals will be reserved for the next iteration, while
others will link to the crystal shell.
Step 6: By the end of step 5, there will still be S crystals in the lake. Repeat step 1 to
step 5 for T iterations.

A2. Experimental Results

The set of benchmark functions contains eight functions that are commonly used
in evolutionary computation literatures to show the solution quality and convergence rate
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(Zhang, Zhu, and Chen 2014). The first four functions are unimodal problems, and the
remaining functions are multimodal. The functions are listed in Table A1, including their
dimensions, initialization ranges, and global optimum. Parameter settings of CEO are listed
in Table A2.

Results of the mean value and standard deviation for 30 and 45 dimensions are listed
in Table A3. Each of the experiments in this section is repeated 50 times. The experimental
results of CEO are compared with the results obtained by root growth algorithm and PSO of
Zhang et al. (2014). For the eight benchmark functions, we have much better solution than
them in both mean value and standard deviation. Therefore, the effectiveness of the CEO on
continuous optimization has been verified.

TABLE 0A1. Benchmark Functions.

Benchmark Function Dimensions Range Minimum

Sphere f1.x/ D
PD
iD1 x

2
i

30 and 45 Œ�100; 100�D 0

SumSquares f2.x/ D
PD
iD1 ix

2
i

30 and 45 Œ�10; 10�D 0

Rosenbrock f3.x/ D
PD�1
iD1 .100.x

2
i
� xiC1/

2 C .1� xi /
2/ 30 and 45 Œ�30; 30�D 0

Schwefel2.22 f4.x/ D
PD
iD1 jxi j C

DQ
iD1

jxi j 30 and 45 Œ�10; 10�D 0

Rastrigin f5.x/ D
PD
iD1.x

2
i
� 10 cos.2�xi /C 10/ 30 and 45 Œ�10; 10�D 0

Schwefel f6.x/ D
PD
iD1�xi sin.

p
jxi j/ 30 and 45 Œ�500; 500�D �12,569.5

Ackley f7.x/ D 20C e � 20e

�
�0:2

q
1
D

PD
iD1 x

2
i

�
� e

�
1
D

pPD
iD1 cos.2�xi /

�
30 and 45 Œ�32:768; 32:768�D 0

Griewank f8.x/ D
1

4000

PD
iD1 jx

2
i
j �

�QD
iD1 cos

�
xip
i

��
C 1 30 and 45 Œ�600; 600�D 0

TABLE 0A2. Parameter Settings of the Crystal Energy Optimizer.

Parameters Value

Number of crystals initialized 100
Initial energy Ei0

Qn
jD1 jRangeij j

Number of dimensions n 30 and 45
Number of crystals forming shell Np nC 1

Number of crystals precipitate inside shell Ns 80
Scale factors ˛; ˇ; 	 [0, 1]
Decision factor for center energy �1 100 (process of precipitation);

0 (process of growth)
Decision factor for frozen crystal �2 0 (process of precipitation);

�100 (process of growth)
Decision factor for wind �3 �50
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