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Due to the dynamic structure in network topology and absence of a
centralized administration in management, a specific routing algorithm
satisfying the demands of QoS is required indeed in mobile Ad Hoc
networks. A novel Social Group Search Optimizer algorithm is pro-
posed by improving the GSO algorithm to a dynamic and discrete algo-
rithm through the introducing of social behaviors. SGSO is divided into
search and prey parts, where “search” is on duty to find the optimal solu-
tion effectively and “prey” is responsible for adjusting the algorithm to
the dynamic change of objective functions. Dynamic Coupling Level is
used to divide the Ad Hoc network and corresponding approaches and
models based on SGSO are applied to routing algorithm, including the
decision factor and local routing table. The convergence and correctness
of our algorithm are verified mathematically and extensive experiments
have been conducted to evaluate the efficiency and effectiveness of the
proposed mechanism in mobile Ad Hoc networks. The results show
that SGSO improves packet delivery ratio and reduces average end-
to-end latency effectively, especially for large-scale and high-dynamic
networks.

Keywords: Ad Hoc network, social behavior, social group searching optimiza-
tion, dynamic network, quality of service

1 INTRODUCTION

Recently in computer science, there is an increased interest in intelligent
algorithms that are inspired by the swarm intelligence and social behaviors
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Property SGSO GSO PSO ACO

Conceptual Social behaviors Animal searching Animal swarm Ants’ path following

inspiration behavior behavior behavior

Searching Search and prey Producing,scrounging Flocking Following pheromone

strategies and ranging trails

Object Dynamic or static Static Static Static

Information Internal and Given out Given out by Given out by

communication Public communications by producer the best particle pheromone

Discrete,Continuous, Continuous, Continuous,

Suitable problems high-dimensional, high-dimensional, unimodal Discrete

multimodal multimodal

TABLE 1
Comparisons Between SGSO, GSO, PSO and ACO

of animal and that can solve difficult problems [1-3]. On the one hand, some
researchers focus on the improvement and applications of classic success-
ful nature-inspired approaches including the Ant Colony Optimizer algo-
rithm (ACO) [4], which has virtual ants as agents that communicate indi-
rect way and uses randomly propagation rules that make difficult to under-
stand algorithms and agents’ behavior, and Particle Swarm Optimizer algo-
rithm (PSO) [5], which is to simulate the social interaction behavior of birds
flocking and fish schooling. On the other hand, some novel bio-inspired
algorithms are proposed. By studying the evolution of “swarms”, the arti-
ficial mosquitoes’ microcosmic actions and macroscopic swarm intelligence,
Mosquito Host-Seeking Algorithm (MHSA), inspired by the host-seeking
behavior of mosquitoes, is proposed in [6]. Similarly, Artificial Bee Swarm
Optimization (ABSO) is a recently invented algorithm inspired by the intelli-
gent behaviors of honey bees such as collection and processing of nectar [7].

Group Search Optimizer algorithm, as a novel algorithm inspired by
swarm intelligence and social behavior, has a great performance on some
classical optimizer problems. It has proved to have much better convergence
and efficiency in benchmark functions mathematically and experimentally in
[8]. The comparison among PSO, ACO and GSO is shown in Table 1. Even
though, GSO and other algorithms still have the following disadvantages pre-
vent them from a variety of practical applications:

� They all have a good performance in continuously objective functions or
discrete problems with little scale, but remain stuck in large scale discrete
problems.

� The objective functions of problems or applications are static.
� They have tendency to fall into local optimal or fail to find the optimal

solution in large scale problems.
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However, with the development of hardware technology and increasing
demand in network, large-scale and high-dynamic networks, such as Ad
Hoc network, are much more popular in military and industry. Therefore,
appropriate and specific routing algorithms are required to take place of the
classical static routing algorithm eagerly. How to develop a proper routing
approach satisfying the strict constraints of wireless dynamic network and
QoS demands has attracted researchers’ attention.

[9] studies how to support fair bandwidth allocation among all end-to-end
flows in a multihop wireless network to achieve the global max-min fairness
objective in bandwidth allocation. It develops a novel theory that maps the
global max-min objective to four local conditions and designs a distributed
rate adjustment protocol to achieve the global max-min objective through
fully distributed operations. By modeling a link delay as a function of the
signal to interference noise ratio of the receiving node in this link and its
packet forwarding time and taking a weight sum of delay and energy con-
sumption as weight of edge, Optimal Edge-cost Topology Control (OETC)
algorithm and Distributed Symmetric Link Maintenance (DSLM) algorithm
are proposed to obtain the minimum weight sum of any edge [10]. Unre-
liable and short-term connectivity can increase communication cost due to
frequent failure and activation of links, and ineffective resource allocation
can increase communication cost due to multi hop communication between
dependent tasks. A two-phase resource allocation scheme to reduce commu-
nication cost between dependent tasks is proposed in [11]. [12] identifies
the key issues that impact end-to-end connection performance when a DSA-
enabled WLAN is integrated with the wired cloud and propose a new network
management framework, called DSASync, to mitigate the identified perfor-
mance issues. [13] studies the problem of congestion control and scheduling
in ad hoc wireless networks that have to support a mixture of best-effort and
real-time traffic and propose a model for incorporating the quality-of-service
requirements of packets with deadlines in the optimization framework. A
novel algorithm, named a distributed channel assignment control, is proposed
in [14] that focus on performance enhancements related to QoS and mathe-
matical analysis techniques for the channel bandwidth. This novel algorithm
uses channel assignment control with a power control to reduce the negative
effects induced by the quasi-exposed node problem, and then the channels
are adaptively negotiated to allow communication in the interference region.
Optimizing over the number of hops, single hop transmission based on Delay-
reliability (D-R), and throughput-delay-reliability (T-D-R) tradeoffs is shown
to be optimal for maximizing a lower bound on the transmission capacity
in the sparse network regime under quality of service constraints in an ad
hoc network [15]. Multicasting through Time Reservation using Adaptive
Control for Energy efficiency [16] provides superior energy efficiency while
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producing competitive QoS performance and bandwidth efficiency by
enabling the nodes to switch to sleep mode frequently and by eliminating
most of the redundant data receptions. Source Routing Mechanism (TSR)
proposed in [17] provides a flexible and feasible approach to choose the short-
est route that meets the security requirement of data packets transmission. It
improves packet delivery ratio and reduces average end-to-end latency by
evaluating the trustworthiness of nodes through their behaviors.

By analyzing the pros and cons of bio-inspired algorithms existing and
social behaviors, as well as the characters and tackle key problems in Ad Hoc
networks, we proposed a novel Social Group Search Optimizer algorithm by
improving the GSO algorithm to a dynamic and discrete algorithm through
the introducing of social behaviors. SGSO is divided into two stages, search
and prey. In search part, GSO algorithm is maintained with the improved
efficiency through internal and public behaviors. New strategy inspired by
prey behavior of wolves is introduced to prey part of SGSO. SGSO has these
advantages (Table 1):

� It has the ability to perform large-scale distributed parallel optimization;
� It has good performance in both dynamic and static problems.
� It can deal with both discrete and continuous problem.
� It can converge;
� It can describe complex behaviors and dynamics;
� It has a comprehensive optimization ability for multiple objectives;
� It has a powerful processing ability in a complex, high-dimensional and

dynamic real-time changing environment;
� It is flexible and easy to adapt to a wide range of optimization problems.

Ad Hoc network is divided into four DC Levels according to its dynamic
coupling level as well. Therefore, SGSO is applied to solve the dynamic and
QoS-satisfied Ad Hoc network. Local routing table based on the theory of
six degree space of separation and decision factor inspired by the decision
behavior are also introduced to improve the effectiveness and efficiency of
our algorithm. The mathematical proofs for convergence and correctness of
our algorithm are provided. The scheme is validated in a simulation environ-
ment using various workloads and parameters and the results show that it can
successfully fit the dynamic environment, and guarantee QoS by maintaining
good delivery ratio, reducing total overhead, and enhancing delay.

The structure of the rest of the paper is as follows. In Section 2, social
group behaviors are discussed and mathematical model for SGSO is built
according to social group behaviors in Section 3. The problem model of Ad
Hoc network is formalized and analyzed in Section 4 and solved by SGSO in
Section 5. Section 6 provides the proofs of the correctness and convergence
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of our algorithm. In Section 7, we present simulation results which attest
to the effectiveness and suitability of SGSO for Ad Hoc network. Finally,
conclusions are drawn in Section 9.

2 SOCIAL GROUP BEHAVIOR

All the manifestations of the interaction and influence between the animals
living together are defined as Social behaviors, including the dominance
hierarchy sequence, communication behavior, courtship behavior, altruistic
behavior, pro-kill behavior and other typical representative behaviors. Social
behaviors not only have an irreplaceable role in nature for maintaining the
stability of natural ecosystems, species diversity and many other aspects, but
also can improve the performance and effectiveness of algorithm when they
are introduced to intelligent algorithm.

2.1 Prey Behavior of Wolves
There’re two kinds of social relationships in wolves, which are the relation-
ship between wolves themselves, and relationship between them and other
animals. Moreover, competition, mutual benefit and predation are the main
acts between wolves and other animals. This paper focuses on the relation-
ships and relevant behaviors between wolves and preys.

The wolf society organizations follow a strict social class model. Their
social organization is divided into three levels: the first level is the leader of
the wolves in the highest level - Alpha level, served by a pair of male wolf and
female wolf; The second level is inferior to the leadership level of the chiefs -
Beta level, served by a pair of male wolf and female wolf; remaining wolves
in group belong to the third level, the lowest level of the wolves - Omega
level. Wolves in different levels play different roles and have different social
division of labor in activities. For example, Alpha wolves and Beta wolf can
breed, while Omega wolves are mainly responsible for hunting. Similarly,
there is a clear division of labor in the process of predation.

Wolves, as social animals, have strong team spirit. Predator is a typical
social group behavior. The process of predator, including search for prey,
pursuit of fleeing pry and hunting, is as shown in Figure 1. When wolves prey,
they will search the prey firstly and select a target to follow. Then wait the
right time to attack. If the prey hasn’t found the wolves nearby, unfortunately,
it will become the food of wolves immediately. However, if prey is lucky
enough to sense them, they will flee and wolves have to chase. The chasing
will end up as two kinds of results, which are getting and losing. During the
pursuit, only one to three wolves chase per time to drag down prey and attack
it together. If wolves lose the prey, they have to stop to search another prey
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FIGURE 1
Prey Behavior of Wolves

again. The prey model is refined according to the prey process of wolves, and
the flow is as shown in Figure 2.

The process of wolves’ prey can be refined as an effective intelligent
search algorithm. The prey can be regarded as the object, wolves as search
individuals and the final goal is a quick and exact strategy to hunt. Compared
with other intelligent algorithm inspired by animals, the most advantage of
wolves is that their prey is dynamic. By observing the process of prey, we

FIGURE 2
Flow of Wolf Prey
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found that wolves’ prey, which is different from some other lower animals,
hasn’t stopped by the time they find the prey. There is a process of chase, or
prey, as well. If the prey hasn’t found them, it will stay still and be caught,
which corresponds to the situation of static object in search algorithm. How-
ever, on the contrary, under the long-term of nature selection, prey will react
rapidly when the hunter nearby, and wolves have to chase on them with the
higher or at least equal speed. This process can be extracted as the model of
dynamic object problem.

For most algorithms, the algorithm inspired by wolves is different from
other lower animals. For example, the Ant Colony Optimization algorithm,
ants only need to search for the food in a certain place, namely the static
object. They leave pheromone on the path to attract more ants. However,
they don’t have a plan B when the object moves, but only to search again.
In this condition, their former work is completely wasted. Moreover, if the
object moves faster than the speed of search, the algorithm may not find its
position. On the contrary, wolves prey strategy compensates this problem
with the dynamic prey. Re-searching only happens when they fail to pursuit.

In summary, social group search optimizer algorithm consists of two
important parts, one is searching part to find the original position of prey,
and the other is preying part to pursuit and catch the prey.

2.2 Internal & Public Behaviors
We shouldn’t ignore that there is an important strategy when the wolves pur-
suit the prey. Only one to three wolves chase on them per time and pursuit
in turn to drag down the prey. This is the biggest advantage of wolves than
tiger or other animals, which prey alone. No matter prey or any other social
group behaviors, the intelligence of group is the division of labor. If all the
individuals in group work alone, the group benefit is just a total number or
less. But if they have interactions, group benefit may be improved. However,
over-interaction will also affect the results. Image that if wolves keep ques-
tioning their hunting strategy and comparing with others, instead of focusing
on the prey, can they really catch the prey? It’s only to give more fleeing time
for prey. That situation also happens in the GSO algorithm. Individuals have
to rank by the result of objective function right after iteration. New producer
and followers are refined in each iteration. This is a typical over-interaction
behavior. Too much time is spent on communication and unnecessary cost is
taken by interaction and ranking.

Therefore, we suggest that the behaviors of group animals should be
divided into two parts, internal behavior and public behavior. Internal behav-
ior can’t be affected by others, such as running or resting, while public behav-
ior is interaction between individuals, such as running towards predator,
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or eliminate individuals which perform relatively bad. Appropriate internal
behaviors should be added to the GSO algorithm. Insert the internal behav-
iors into public ones to make them hunting and interacting alternately in a
proper order.

2.3 Decision Behavior
By the research of variety of decision behaviors of social animals and human
beings, Franz J. Weissing proposed a leaders model, pointing out that there
are a few individuals acting as leaders while others acting as followers. This
leader-follower relationship is formed spontaneously and influent the behav-
ior of social group. Amount of experiments and researches show that this
model is available for any group, only with different influent factor deciding
the leader for different group.

To reap the benefits of group living, some animals have to neglect their
own references and following a leader. There is a famous coordination prob-
lem known to game theorists as the Battle of the Sexes, which imagines a
married couple who want to spend the evening together. Husband and wife
(the players) can either go to a football game or to the opera, but they can-
not communicate with each other about where to meet. Neither wants to miss
their partner by going to a different event from them. If that happens, both get
a pay-off of zero. When they go to the same event, the wife would prefer the
opera, whereas the husband would prefer the football game. When meeting
at the same event, the players get the pay-offs 1 and 1-k (where 0 < k < 1),
depending on whether or not they realize their preferred option.

Leaders Model is proposed according to this game theory, and happens to
fit for group with more than two individuals. Assuming that there are inter-
actions between individuals in social groups, and they will either insist their
preferred option or ignore it to follow others. Each player is characterized by
a strategy, λ, corresponding to the player’s probability of sticking to his or
her preferred action. Individual with higher λ is leader, while with lower λ is
follower.

A population of only leaders (λ = 1) is not evolutionistic stable, because
they will never meet and will get a pay-off of zero. Likewise, a population
of only followers (λ = 0) is not stable either, because the players will again
miss each other and will get a pay-off of zero. Instead, the population will
first evolve to an intermediate value of λ (λ = 0.5). However, this is not the
final outcome. From the intermediate strategy, the population will diversify
and evolve to a state where two strategies coexist – a leader strategy (say, λ

= 0.9) and a follower strategy (say, λ = 0.1).
This model can be applied to lots of group behavior and provides a

new direction of development for intelligent algorithms simulated biological
behavior.
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3 MATHEMATICAL MODEL FOR SOCIAL GROUP SEARCH
OPTIMIZER

Social Group Search Optimizer algorithm (SGSO) is proposed by introducing
the social group behaviors of wolves. The SGSO algorithm is an expansion
and improvement of original Group Search Optimizer algorithm.

The SGSO algorithm is divided into two parts, search and prey. In the
search part, we inherit the GSO only to improve it with internal behaviors.
While in the prey part, a new pursuit strategy is introduced to adjust to the
dynamic situation effectively.

3.1 Search: Improved Group Search Optimizer
The GSO algorithm divides individuals into three characters, producer,
scroungers and dispersed members based on the Producer- Scrounger (PS)
model. Three roles have different search strategies and find the location of
prey by the guidance of objective function. The characters will be resigned
each iteration according to their performance. However, the overhead cost
by frequent interaction will reduce the efficiency. Therefore, more internal
behaviors are inserted into public behaviors in SGSO to improve the perfor-
mance of search part.

Search Space of SGSO:
The search space is an n-dimensional space, where the scanning field of
vision is simplified and generalized to an n-dimensional space, which is
characterized by maximum pursuit angle θmax ∈ R1, and maximum pur-
suit distance lmax ∈ R1. The ith member at the kth searching iteration has
a current position xk

i ∈ Rn , a head angle ϕk
i = (ϕk

i1, ..., ϕ
k
i(n−1)) ∈ Rn−1.

The search direction of the ith member, which is a unit vector Dk
i (ϕk

i ) =
(dk

i1, ..., dk
in) ∈ Rn that can be calculated from ϕk

i via a polar to Cartesian
coordinate transformation

dk
i1 =

n−1∏
q= j

cos (ϕk
iq )

dk
i j = sin(ϕk

i( j−1)) ·
n−1∏
q= j

cos (ϕk
iq )( j = 2, ...n − 1)

dk
in = sin(ϕk

i(n−1))

where r1 ∈ R1 is a normally distributed random number with mean 0
and standard deviation 1 and r2 ∈ Rn−1 is a uniformly distributed random
sequence in the range (0, 1).
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This strategy is employed by SGSO to handle the bounded search space:
when a member is outside the search space, it will turn back into the search
space by setting the variables that violated bounds to its previous values.

Producer:
In the SGSO algorithm, at the kth iteration the producer X p behaves as fol-
lows. The producer will scan at zero degree and then scan laterally by ran-
domly sampling three points in the scanning field: one point at zero degree,
one point in the right hand side hypercube and one point in the left hand side
hypercube:

Xz = Xk
p + r1lmax Dk

p(ϕk)

Xr = Xk
p + r1lmax Dk

p(ϕk + r2θmax/2)

Xl = Xk
p − r1lmax Dk

p(ϕk − r2θmax/2)

The producer will then find the best point with the best resource (fitness
value). If the best point has a better resource than its current position, then it
will fly to this point. Or it will stay in its current position and turn its head to
a new randomly generated angle

ϕk+1 = ϕk + r2αmax

where αmax ∈ R1 is the maximum turning angle. If the producer cannot find
a better area after a iterations, it will turn its head back to zero degree

ϕk+a = ϕk

where a ∈ R1 is a constant. During each searching bout, a number of group
members are selected as scroungers. The scroungers will keep searching for
opportunities to join the resources found by the producer.

Scroungers:
At the kth iteration, the area copying behavior of the ith scrounger can be
modeled as a random walk toward the producer

Xk+1
i = Xk

i + r3 ◦ (Xk
p − Xk

i )

where r3 ∈ R1 is a uniform random sequence in the range (0,1). Operator “◦”
is the Hadamard product or the Schur product, which calculates the entrywise
product of the two vectors. During scrounging, the ith scrounger will keep
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searching for other opportunities to join [2]. We modeled this behavior by
turning the ith scrounger’s head to a new randomly generated angle.

Dispersed Members:
At the kth iteration, it generates a random head angle ϕi ; and then it chooses
a random distance

li = a · r1lmax

and move to the new point

Xk+1
i = Xk

i + li D
k
i (ϕk+1)

Social Interaction Behaviors:
By analyzing the behaviors of social group, we divide the behavior of
SGSO into two parts: internal and public behaviors. Individuals execute their
own strategy themselves without looking at the others in internal part and
exchange search information to resign their character in public part. There is
an interactional factor δ controlling the interaction, drawing a line between
internal behavior and public behavior. Specifically, there is a public interac-
tional behavior every δ internal search behavior.

This interaction improvement for SGSO is significant. Not only reduce
the unnecessary interaction and increase the efficiency of search, but also
enhance the parallelism of algorithm, as shown in Figure 3. Although GSO is

FIGURE 3
Parallel Structure of SGSO



268 XIANG FENG et al.

famous for its parallel structure and well performance on great scale problem,
individuals cannot be assigned to computation cells effectively with over-
much interaction. However, interactional factor δ gives the regular space for
internal search. Producer, scroungers and dispersed members are allocated to
different computation cells. After δ iterations, a computation cell is respon-
sible for ranking individuals according to their values of objective function
and resigning their characters by the ranking results. Repeating this internal
search and public ranking until optimal result appears.

3.2 Prey: Dynamic Object
As we’ve claimed in last section, search part only finds the position of prey
rather than catches it. If the prey realizes that it has been found, it will escape
immediately. Individuals have to react quickly and effectively to catch them.
Namely, when the objective function f (X1) changes to f ′(X2), individuals
in SGSO have to change their position and speed as well.

Assuming that � f is the relative variable, thus,

� f = f (X2) − f ′(X1)

All the functional transformation can be summarized as the transformation
of variable in different dimensions. Set two-dimension function f = x2

1 + x2
2

as a simple example, X-axis and Y-axis represent the independent variables
and Z-axis represents the objective function, as shown in Figure 4. Thus the
transformation of n-dimension function can be decomposed to (n+1)th-axis
and handled respectively.
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(a) DC Level 1 (b) DC Level 2

(c) DC Level 3 (d) DC Level 4

FIGURE 5
Structures and Movement of Four Dynamic Coupling Levels

(1) If � f is a constant, function transformation is alone the (n+1)th-axis,
as shown in Figure 5 Left. Although the value of optimal solution may be
changed, the position of optimal solution won’t are exactly the same. Thus
since the solution position hasn’t been changed, there’s no need to change the
individuals in SGSO.

(2) If � f isn’t a constant, i.e. � f is relevant to X, as shown in Figure
5 Middle. Although the value of optimal solution hasn’t been changed, the
position of optimal solution has changed. By this condition, the transforma-
tion of X should be discussed.

If the transformation �X is difference,

�X = X2 − X1

�X should be decomposed to every axis.

�xi = x2i − x1i

Where, �xi is constant.
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(3) If �X is multiple, i.e.

�X = X2/X1

�xi = x2i/x1i , �xi is constant. In this condition, both the value and position
of optimal solution will change, as shown in Figure 5 right.

In summary, the variable of the objective function can be represents as
f ′(X ) = f (αX + β) + θ . According to the analysis above, θ doesn’t have
any influence on optimal solution, while, α and β do. The corresponding
adjustment should be done with the SGSO, or it has to re-search.

When objective function changes to f ′(X ) ,

f ′(X ) = f (αX + β) + θ

Every dimension of each individual in SGSO should make the equal trans-
formation,

X ′ = αX + β

It’s worth noting that each dimension’s transformation is different,

�xi = � f ∗ cos ϕi

And xi
′ = (xi − βi )/αi

Therefore, when the objective function has a transformation, individuals
in SGSO should change and go on search part until they get the prey.

4 PROBLEM DESCRIPTION: AD HOC NETWORK

4.1 Dynamic Network
One of the biggest character of Ad Hoc network is dynamic. Here, we intro-
duce a new definition to describe the dynamic networks, Dynamic Coupling
Level (DC Level).

Therefore, the Ad Hoc network can be divided into four levels according
to their dynamic degree. The higher level means higher dynamic. Characters
for different dynamic coupling levels are shown in Table 2. DC Level 1 is
the basic level with static or micro-movers, such as the temporary wireless
networks for exhibition hall. Devices moving ruleless in a certain range, for
example, the wireless sensor networks or emergence service, makes up the
DC Level 2. In DC Level 3, device may move with a certain velocity in some
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DC Level Type Problem Application

1 Static or Micro-movers Static Exhibition Hall
2 Move in certain range Range Emergence Service
3 Move with certain velocity Velocity Military Activity
4 Move without constraints Position Communications in Battle

TABLE 2
Characters of Dynamic Coupling Levels

direction, which always happens in military activities. Setting communica-
tions in battle as an example, devices in DC Level 4 move ruleless without
any constraints.

The structures and movement of four dynamic coupling levels are as
shown in Figure 5, where the devices are represented by different graphic
symbols, blue circles are the possible moving ranges of devices, grey circles
are the transmission ranges, and the red symbols and arrows represent the
possible positions after moving and moving directions respectively. Devices
inside others’ ranges are linked with lines. By observing these four figures,
we can analyze the key problems and seek proper solutions for them. As
for DC Level 1 in Figure 6(a), devices are static or barely moving, which
makes the static route table important. Moving range and velocity are the key
points for communication in Figure 6(b) and Figure 6(c), respectively. When
it comes to ruleless moving without any constraints, the new position is of
significant. The solutions will be discussed concretely in next section.

FIGURE 6
Ad Hoc Network
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4.2 QoS-guaranteed Network
Besides dynamic character, QoS-guaranteed routing is another tackle key
problem for Ad Hoc networks. Because the transmission range and band-
width in dynamic networks are much more limited than static networks, and
lead to more constraints. QoS-guaranteed routing algorithm is to find out the
minimum cost path from source to destination satisfying constraints.

Definition 1. Weighted graph 	 = (
,�) is defined as the Ad Hoc Net-
work, where 
 is the set of devices and � is the set of paths between
devices. |
| and |�| are the number of devices and path respectively. They
are variable with the dynamic moving of devices. Paths are from Device i to
other devices which are inside Device i’s range. For each path φi j ∈ � and
φi j = (λi , λ j ), λi ∈ 
,λ j ∈ 
.

Definition 2. Device is represented by a triple λi < T ype, Bandwidth,

Range >, where, Type={D, S} (D is short for Dynamic and S is short for
Static) represents the dynamic type of device, Bandwidth is the capability
of the device, and Range is the transmission of the device. The bandwidth,
range and overhead of devices λi can also be represented as Bandwidth(λi ),
Range(λi ) and Overhead(λi ).

Definition 3.
Overhead(path(λs, λd )) = ∑

λi ∈path(λs ,λd )

Overhead(λi ) + ∑
φi j ∈path(λs ,λd )

Overhead(φi j )

Delivery Ratio(λi ) = Receive(λi )

Forward(λi )
× 100%

Definition 4. (Objective Function)
The multi-objective function of Ad Hoc networks is defined by,

{
f1 = min(Overhead(path(λs, λd )))
f2 = max(

∑
Delivery Ratio(λi ))

While, with the constraints,

{
Forward(λi ) < Bandwidth(λi )

i f path(λi , λ j )exists, path(λi , λ j ) < Range(λi )

Set electronic communication network as an example, as shown in Fig-
ure 6. |
| = 9 and |�| = 10 represent the number of devices and links.
λ1 =< S, 100, 200 >, λ2 =< D, 80, 150 > and λ8 =< D, 30, 80 > repre-
sent the property of devices. Device 1 is a typical static device in DC Level
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1 and Device 2-5 are in DC Level 2, which perform a random moving in a
certain range. Device 6-9 perform a random moving without certain range or
in a direction with some velocity, namely, in DC Level 3 and DC Level 4.

5 SGSO FOR AD HOC NETWORK

5.1 Initialization: Discrete SGSO for Networks
We defined a weighted graph G=(V, E) as the Ad Hoc Network, where V is
the set of nodes and E is the set of path between nodes. There are two initial
matrixes representing the statu of network. Matrix M0 = [mi j ] represents the
connection statu of wireless network. mi j = {−1, 1}, where mi j = −1 means
that node j isn’t inside the transmission range of Node i, and mi j = −1, on the
contrary, means that information can be delivered from Node i to Node j. The
second matrix is overhead matrix Moverhead = [mi j ], where mi j = c(i �= j)
represents the overhead from Node i to Node j and mi j = c(i = j) represents
the overhead of Node i.

Let a two-dimensional adjacent 0-1 matrix X (N × N ) represents the solu-
tion of network route or path. The value of xi j is either 0 or 1 where xi j = 1
represents that there is a path between Node i and Node j, while xi j = 0 rep-
resents Node i and Node j are not connected.

There should be only one element’s value equals 1 in a row as the path
is unique when we just consider the unicast route. If the number of nodes is
N, the particles will move towards the origin on a N-dimensional space dur-
ing the optimization process, where xi j is a coordinate of the N-dimensional
space.

First, initialize M particles in the N-dimensional space randomly.
Each particle is a path and is a N-dimensional vector Xi = (Xi1, Xi2,

Xi3, · · · , Xi N ). The N × N matrix X is also the position of particles in
searching space. Secondly, improve GSO algorithm to 0-1 discrete model
by Sigmoid function. According the feature of producer, here, we turn into
value between 0 and 1, by

sig(r1lmax Dk
p(ϕk)) = 1

1 + exp(−r1lmax Dk
p(ϕk))

Thus we obtain the improved function of producer,

Xz = Xk
p + sig(r1lmax Dk

p(ϕk))

Xr = Xk
p + sig(r1lmax Dk

p(ϕk + r2θmax/2)))

Xl = Xk
p + sig(r1lmax Dk

p(ϕk − r2θmax/2)))
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Set the maximum number of every row 1 and others 0. Similarly, the same
strategy is used for scrounges and dispersed members by Sigmoid function.
The characters are resigned in each iteration. For example, supposing a net-

work with 5 nodes, we obtain a solution matrix X =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

after n iterations. x12 = 1 means there is a path from Node 1 to Node 2, and
then we will check Row 2 to find out the path from Node 2 to next node. Path
1− >4− >3− >5 thus is the available path from Node 1 to Node 5.

5.2 Solutions: under DC Levels
Ad Hoc network has been classified under four levels according to their
dynamic couple levels in this paper. Therefore, we propose route approaches
based on this level category using SGSO algorithm.

For DC Level 1, an on-table route is more appropriate since the table is
barely changed. Even though, the network scale should also be considered. If
the scale is relative small with N nodes, S N × N Matrix Xi are initialized.
The objective function is static as well, by,

f1 = min(Overhead(path(λs, λd )))

Overhead(path(λs, λd )))
= ∑

i, j∈node
(Overheadnode(i) + Overheadpath(i j))

= ∑
i, j∈node

(Moverhead × Xi j )

Under the iterations of SGSO algorithm, Route solution Matrix Xi for Node
i is obtained. Otherwise, if the network scale is large, the building of static
table will take too much time. We prefer another local routing approach,
which will be introduced in DC Level 4.

The key access to DC Level 2 is the relationship between delivery range
R and moving range r. We define that R = �r , where � indicates coefficient
between them. If � > 10, assume that R is big enough to use the static table.
Thus, we revise the delivery range to (R-2r) and continue the method of DC
Level 1. While if 1 < � < 10, we prefer the dynamic part of SGSO to build
route table. Namely, we change the objective function dynamic when the
node moves. By this means, f1 changed by the change of Overheadpath(i j).
Otherwise, if � < 1 means that R is less than r and the moving range is so
large that we classify this condition into DC Level 4.
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DC Level 3 is similar with DC Level 2 in some degree, only with the
different objective function. The Overhead of path change with a speed of v,
thus, we define that

Overhead ′
path(i j) = Overheadpath(i j) + vt .

By this way, we obtain a real-time route table for this node changing with
time and iteration.

Finally, it comes to DC Level 4, the dramatic dynamic network. We intro-
duce a new approach called Local routing table inspired by the theory of Six
Degrees of Separation. Local routing table is built by combining the demand-
driven routing algorithm and the table-driven routing algorithm. For each
device, a fixed routing table with M (M>0) level is built where M is the
number of route for least cost from this device to the destination node. This
method is designed particular for large scale and high dynamic network.

The value of M is relevant to the total amount of nodes. Local routing
table contains the node itself when M=1 and all the nodes when M=N. We
will discuss the proper relationship between M and N in the simulation.

Supposing that X1n is the shortest path from Node 1 to Node n through
n hops. If Node 1’ s routing table contains Node n, we will get the optimal
solution easily. Otherwise search the routing table of Mth hop, thus, the com-
plex multi-hop searching problem is simplified into a combination of several
groups

X1n =
n−1∑
i=1

Xi(i+1)

If this path is through Node i and Node j, then

X1n = X1i + Xi j + X jn

in this condition, minimizing X1i , Xi j and X jn can get the minimum of X1n

X1nmin = X1i min + Xi j min + X jn min

Thus, we can get the best path by comparing the cost of these few group.

5.3 Efficiency: Decision Behaviors for QoS
According to Leader Model, individuals in the group whether to be leaders
or followers depends on its decision factor λ. It’s the same with Ad Hoc net-
work. There are N nodes in the network with different range and bandwidth,
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as shown in Figure 6. We regard every node of the group as a individual in
the leader model with a decision factor λ. Therefore, the decision factor will
affect the transform decision by affecting the node’s cost.

If λ=1, means this node is a leader and λ=0 means it’s a follower. In the Ad
Hoc network, the leader node is available and the follower node is saturation.
When 0 < λ < 1, the individuals can either choose their preferred option or
copy the previous action of the other player depending on the value of λ.
That means that this node has forwarded information but hasn’t arrived at
its bandwidth. Since the node has been occupied, the package loss may be
higher than other path.

What makes a leader in the group? It is different from group to group.
The decision factor of Ad Hoc network depends on the relationship between
bandwidth and forwarding information, by,

λi = cos(
π

2
× x

min(bandwidthi )
)

Then the cost of the node,

node cos ti
′ = 1

λ i
node cos ti

The objective function, by,

f =
∑

(xi j path overheadi j + 1

λ i
node overheadi + 1

λ j
node overhead j )

6 MODEL ANALYSIS AND PROOFS

Convergence Theorem give a benchmark to verify the convergence of algo-
rithms. To prove the convergence and correctness of our algorithm, we ana-
lyze the search space and function of producer and scroungers respectively
according to the rules of Convergence Theorem.

Convergence Theorem: Supposing that A is an algorithm on X and 	 is
the set of solution, the initial point is given x (1) ∈ X , and iterations are as
follows:

If x (k) ∈ 	 , the iteration is finished; or, set x (k+1) ∈ A(x (k)) .
Let k+1 substitutes k, and repeat the above process. Thus, we obtain the

sequence {x(k)}.
Then set that

1. Sequence {x(k)} is contained in compact subset X;
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2. There exists a continuous function, which is a decreasing function of 	

and A;
3. Mapping A is closed on the complement of 	.

The limitation of any convergent subsequence of sequence {x(k)} belongs
to 	.

Lemma 1. Supposing that the objective function’s searching space is U
and the producer’s is P. If X represents the producer’s location, then
∀X ∈ U ⇒ X ∈ P.

Proof. As we known, the producer’s searching methods,

Xz = Xk
p + r1lmax Dk

p(ϕk)

= Xk
p + r1

√√√√ n∑
i=1

(Ui − Li )2 sin(ϕk
i( j−1))

n−1∏
q= j

cos(ϕk
iq )

Xr = Xk
p + r1lmax Dk

p(ϕk + r2θmax/2)

= Xk
p + r1

√√√√ n∑
i=1

(Ui − Li )2 sin(ϕk
i( j−1))

n−1∏
q= j

cos(ϕk
iq + r2θmax/2)

Xl = Xk
p − r1lmax Dk

p(ϕk − r2θmax/2)

= Xk
p + r1

√√√√ n∑
i=1

(Ui − Li )2 sin(ϕk
i( j−1))

n−1∏
q= j

cos(ϕk
iq − r2θmax/2)

In an n-dimensional search space, the ith member at the kth
searching iteration has a current position xk

i ∈ Rn , a head angle
ϕk

i = (ϕk
i1, ..., ϕ

k
i(n−1)) ∈ Rn−1. The search direction of the ith member,

which is a unit vector Dk
i (ϕk

i ) = (dk
i1, ..., dk

in) ∈ Rn that can be calculated
from ϕk

i via a polar to Cartesian coordinate transformation

dk
i1 =

n−1∏
q= j

cos (ϕk
iq )

dk
i j = sin(ϕk

i( j−1))
n−1∏
q= j

cos (ϕk
iq )( j = 2, ...n − 1)

dk
in = sin(ϕk

i(n−1))

lmax = ||U − L|| =
√

n∑
i=1

(Ui − Li )2
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FIGURE 7
GSO’s searching space in 2-dimension

Li and Ui are lower and upper bound respectively, thus, lmax is the distance
between the two most distant nodes in the searching space.

That means the producer’s searching space is a sphere whose center is Xk
p

and radius is

√
n∑

i=1
(Ui − Li )2. An example of 2-dimension searching space is

shown in Figure 7. Rectangular area ((-a, a), (-b, b)) is the objective function’s
searching space. The area in the dotted line is the producer’s searching space,
which is composed of four circles.

It turns out that P ⊂ U , thus, ∀X ∈ U ⇒ X ∈ P .

Lemma 2. The value of producer’s objective function decreases in every
iteration by GSO, namely, if Px(t) is the value of objective function, thus,
f (Px(t + 1)) ≤ f (Px(t)).

Proof. Supposing that there are only producers in the group, scourges and
dispersed members are omitted. According to producers’ methods,

Px(t + 1) = min(Px(t), Xz, Xr , Xl)
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that means,

f (Px(t + 1)) ≤ f (Px(t))

Thus it turns out that, the producer’s value of objective function decreases
monotonically.

Lemma 3. The scrounges converges to the producers, namely,
xp ∈ Px, xs ∈ Ps, xs → xp stands for converging).

Proof. Here, we set the dimension n = 1 to simplify the problem.

x(k + 1) = x(k) + r3 × (xp − x(k))

Since the movement of particles is a second-order difference equation, then
the Z-transform leads to,

zY (z) − zy(0) = (1 − r3)Y (z)

that is,

z − 1 + r3 = 0

According to the Routh’s Stability Criterion, necessary and sufficient condi-
tion for a second-order linear system is a condition that all the coefficients of
characteristic equation are positive. With the result, we will then derive the
condition to guarantee the stability of a difference equation (when the system
continuous cyclical oscillation with the same amplitude and limited speed, it
can be considered as critical stability.)

0 < r3 < 2

When Equation (34) is satisfied and according to Z-transform final-value the-
orem,

x(k) = lim
z→1

((z − 1) · X (z)) = xp

That means scourges will converges to producer when 0 < r3 < 2.

Theorem 1. GSO algorithm’s searching space is global and the value of
objective function decreases in every iteration.
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Proof.

1. Producer’s searching space is global according to Lemma 1, and scourges
search around the producer in angel θ . Meanwhile, dispersed members,
by,

Xk+1
i = Xk

i + li Dk
i (ϕk+1)

Xk+1
i = Xk

i + a · r1lmax sin(ϕk+1
i( j−1))

n−1∏
q= j

cos(ϕk+1
iq − r2θmax/2)

Dispersed members move randomly by angel ϕk+1, which is the optimal
result in this iteration. The purpose of dispersed members is avoiding
local optimum.

2. The value of producers’ objective function decreases according to
Lemma 2. When an iteration is finished,

X p+1 = min{X1, X2, ..., Xn}a

which means,

X p+1 ≤ X p

In summary, the particle’s searching space in GSO is global and the
value of objective function decreases, namely, the correctness of GSO
algorithm is verified and GSO can be applied to solving space-searching
problem.

Theorem 2. GSO algorithm is a global convergent algorithm.

Proof.

1. According to Theorem 1, GSO algorithm’s searching space is global and
the value of objective function decreases in every iteration. Supposing
that Sequence {x(k)} is the solutions we obtained, thus it must be in
the global searching space. Therefore, Sequence {x(k)} is contained in
compact subset X.

2. As we’ve analyzed, the function of producer and scroungers are both
decreasing with the iteration. Furthermore, Dispersed members who per-
form random walk motions are the 20% worst performers in iteration.
They can find out new position when producer is in local optimum.
Therefore, there exists a continuous function, which is a decreasing func-
tion of 	 and A;
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3. This strategy is employed by GSO to handle the bounded search space:
when a member is outside the search space, it will turn back into the
search space by setting the variables that violated bounds to its previous
values. With the searching strategy and global searching space, mapping
A is closed on the complement of 	.

In summary, based on the Convergence Theorem, GSO algorithm is a
global convergent algorithm. The conclusion is straightforward.

7 SIMULATIONS

Here, we give the experimental results, which serve four purposes. First,
simulate the mobile Ad Hoc network satisfying QoS demands in different
DC Levels. Secondly, using SGSO routing algorithm to build route table and
compare delay with other classical algorithms. Thirdly, compare the perfor-
mance in overhead of GSO and SGSO algorithm when building the dynamic
route table to highlight the effectiveness of our algorithm. Finally, set simple
examples to illustrate the improvement of local routing table and decision
factor.

All the experiments presented in this section are completed on Windows
7, Visual Studio 2010 C# Windows Form.

7.1 Dynamic Networks
Since we’ve already divided the Ad Hoc networks into 4 levels according to
their dynamic coupling levels and analyzed solutions on different situations,
the simulations are proceeded and discussed under different levels.

DC Level 1: Robust global routing table is built by SGSO in DC Level 1
effectively. To verify the effectiveness and efficiency of SGSO routing algo-
rithm experimentally, we compared the results by SGSO with the other clas-
sic algorithm, including the AODV, Genetic Algorithm (GA) [18] and Ant
Colony Optimization algorithm (ACO) [19]. The end-to-end delay and deliv-
ery ratio shown in Figure 8 and Figure 9 illustrates the performance of our
algorithm clearly. We can also draw the conclusion that the SGSO routing
algorithm has better stability and higher efficiency than other algorithms.

DC Level 2 and Level 3: The experiments on DC Level 2 and Level 3 focus
on the overhead of Ad Hoc networks when the structure of network changes
during transmission.

Figure 10 shows the result of overheads of routing table by GSO and
SGSO, respectively. The improvement performance is definitely clear. When
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FIGURE 8
Number of Nodes vs Delay
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Number of Nodes vs Delivery Ratio
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Overhead of routing table by GSO and SGSO
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FIGURE 11
Local Routing and Transmission

the device moved in iteration 50, the original GSO algorithm searched from
the beginning, while SGSO algorithm adapted to the new condition immedi-
ately.

DC Level 4: As for the ruleless moving in DC Level 4, local routing table
is built. As shown in Figure 11, we built 3-level routing tables of 50 devices.
Set Device 10, 23 and 25 as examples, local tables are highlight in the figure,
which shows that their edges are linked. A transmission from device 45 to
device 22 goes through 2 routing tables.

7.2 Decision Factor
Initialize 20 nodes in three device types. Device A contains Node 1, 2, 3 and
Node 7, Node 4, 5, 6, 8, 9, 10, 11, 12 belong to Device B and the rest are
Device C. The node’s range and bandwidth are shown in Table 2.

We compare the nodes’ information including bandwidth, decision factor,
delivery information, node’s overhead and path’s overhead between network
with decision factor and the one without decision factor. Figure 7 and Figure
8 are QoS-guaranteed Ad Hoc network experimental results with decision
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Device Range Bandwidth Nodes

A 180 200 1, 2, 3, 7
B 100 150 4, 5, 6, 8, 9, 10, 11, 12
C 50 100 13, 14, 15, 16, 17, 18, 19, 20

TABLE 3
Ranges and Bandwidth

With Decision Factor Without Decision Factor

Delivery Delivery
Sending Receive Sending Ratio D.F. Overhead Receive Sending Ratio Overhead

10 10 10 100% 0.988 1 10 10 100% 1
30 30 30 100% 0.951 1.01 30 30 100% 1
50 50 50 100% 0.809 1.05 50 50 100% 1
70 70 70 100% 0.588 1.23 70 70 100% 1
90 90 90 100% 0.156 4.58 90 90 100% 1
95 95 95 100% 0.078 6.39 95 95 100% 1
96 96 96 100% 0.060 12.75 96 96 100% 1
98 96 96 100% 0.060 12.75 98 98 100% 1

100 96 96 100% 0.060 12.75 100 100 100% 1
110 96 96 100% 0.060 12.75 110 100 90.9% 1

TABLE 4
Decision Factor Comparisons

factor and experimental data is in Table 3. By Node 16, when the amount of
sending information is 50, decision factor is 0.7, and the node’s overhead is 1,
which is far away from affecting delivery. However, when the amount arrives
at 50, decision factor is 0.06, which makes the node’s overhead increasing
sharply. For this reason, Node 9 will be chosen to replace Node 16 because
of lower overhead even though Node 16’s bandwidth hasn’t arrived. It also
avoids packet loss from overloading and increases delivery ratio.

Node 16’s information is shown in Table 3. As shown in Table 3, decision
factor’s effectiveness is obvious only when the information forwarding arrive
at 90%. Decision factor’s sharply decreasing increase the node’s overhead,
which makes sure that its forwarding information is less than its bandwidth
and forwarding rate is 100%. On the contrary, the nodes will stop forward-
ing information only after that’s arrival at bandwidth, which decreases the
forwarding rate and increase package loss rate.

8 CONCLUSION

Mobile Ad Hoc networks are spontaneously deployed over a geographically
limited area without well-established infrastructure. The networks work well



SOCIAL GROUP SEARCH OPTIMIZER 285

(a) 50 Packages (b) 98 Packages

FIGURE 12
Package Delivery from Node 3 to Node 20 with decision factor

only with the specific routing algorithm designing for dynamic structure and
satisfying Quality of Service. A novel Social Group Search Optimizer algo-
rithm by improving the GSO algorithm to a dynamic and discrete algorithm
through the introducing of social behaviors. SGSO is divided into search and
prey parts, where “search” is on duty to find the optimal solution effectively
and “prey” is responsible for adjust the dynamic change of objective func-
tions. SGSO has the ability to perform large-scale distributed parallel opti-
mization and a powerful processing ability in a complex, high-dimensional
and dynamic real-time changing environment. Dynamic Coupling Levels
promote the routing algorithm based on SGSO to solve Ad Hoc network
problems more particularly and effectively. To apply the SGSO into Ad Hoc
network, decision factor and local routing table are also introduced to SGSO
routing algorithm and successful performance is obtained, especially for high
level dynamic networks. The convergence and correctness of our algorithm
are verified mathematically and extensive experiments have been conducted
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to evaluate the efficiency and effectiveness of the proposed mechanism in
mobile Ad Hoc networks. The results show that SGSO improves packet deliv-
ery ratio and reduces average end-to-end latency effectively.

However, more practical simulations based on real data in life are still
needed in future work. As a distributed and parallel algorithm, internal and
public behaviors of SGSO should be arranged more clearly to elevate paral-
lelism and reduce the executing time. Moreover, dynamic feature of SGSO
can be improved to apply in more dynamic applications.
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